2009年龍巖市高中畢業(yè)班質(zhì)量檢查
數(shù)學(xué)(理科)試題
本試卷分第I卷(選擇題)和第Ⅱ卷(非選擇題),共4頁(yè). 全卷滿分150分,考試時(shí)間120分鐘.
參考公式:
樣本數(shù)據(jù)x1,x2,…,xn的標(biāo)準(zhǔn)差: s=,其中為樣本平均數(shù);
柱體體積公式:V=Sh ,其中S為底面面積,h為高;
錐體體積公式:V=Sh,其中S為底面面積,h為高;
球的表面積、體積公式:,,其中R為球的半徑.
第I卷(選擇題 共50分)
一、選擇題:本題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一
1. 已知復(fù)數(shù),則的共軛復(fù)數(shù)是
A. B. C. D.
2. 正項(xiàng)等比數(shù)列中,若,則等于
A. -16 B.
3. 已知隨機(jī)變量,若,則等于
A. 0.1 B. 0.2 C. 0.3 D. 0.4
4. 已知兩個(gè)向量a、b滿足ab =-,| a |=4,a和b的夾角為135°,則| b |為
A. 12 B. 3 C. 6 D.
5. 若 ,且, 則實(shí)數(shù)的值為
A. 1或3 B. -3 C. 1 D. 1或 -3
6. 實(shí)數(shù)、滿足 則=的取值范圍是
A. [-1,0] B. -∞,0] C. [-1,+∞ D. [-1,1
7. 過拋物線的焦點(diǎn)作直線交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則等于
A.10 B.8 C.6 D.4
8. 一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為,得2分的概率為,得0分的概率為0.5(投籃一次得分只能3分、2分、1分或0分),其中、,已知他投籃一次得分的數(shù)學(xué)期望為1,則的最大值為
A. B. C. D.
9. 設(shè)函數(shù) 則函數(shù)的零點(diǎn)個(gè)數(shù)為
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
10. 如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公方差.設(shè)數(shù)列是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將這種順序的排列作為某種密碼,則這種密碼的個(gè)數(shù)為
A. 18個(gè) B. 256個(gè) C. 512個(gè) D. 1024個(gè)
第Ⅱ卷(非選擇題 共100分)
二、填空題:本大題共5小題,每小題4分,共20分,把答案填在答題卡的相應(yīng)位置.
11. 假設(shè)關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)(萬(wàn)元),有如下的統(tǒng)計(jì)資料
使用年限
2
3
4
5
6
維修費(fèi)用
2.2
3.8
5.5
6.5
7.0
若由資料可知和呈相關(guān)關(guān)系,由表中數(shù)據(jù)算出線性回歸方程中的=,據(jù)此估計(jì),使用年限為10年時(shí)的維修費(fèi)用是 萬(wàn)元.
(參考公式:,
)
12. 已知某算法的流程圖如圖所示,則輸出的結(jié)果是_______________.
13. 一個(gè)空間幾何體的三視圖如圖所示,其正視圖、側(cè)視圖、
俯視圖均為等腰直角三角形,且直角邊長(zhǎng)都為1,則它的
外接球的表面積是 .
14. 設(shè)函數(shù)(),若,
,則= .
15. 已知集合,
有下列命題
①若 則.
②若則.
③若則的圖象關(guān)于原點(diǎn)對(duì)稱.
④若則對(duì)于任意不等的實(shí)數(shù),總有成立.
其中所有正確命題的序號(hào)是 .
三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟.
16. (本小題滿分13分)
已知的三個(gè)內(nèi)角、、所對(duì)的邊分別為、、,且,
.
(Ⅰ)求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值.
17.(本小題滿分13分)
如圖,正方形所在平面與等腰直角三角形所在平面
互相垂直,,點(diǎn)分別為的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)線段上是否存在一點(diǎn),使與平面
所成角的正弦值為?若存在,請(qǐng)求出的
值;若不存在,請(qǐng)說明理由.
18. (本小題滿分13分)
某電腦生產(chǎn)企業(yè)生產(chǎn)一品牌筆記本電腦的投入成本是4500元/臺(tái). 當(dāng)筆記本電腦銷售價(jià)為6000元/臺(tái)時(shí),月銷售臺(tái);根據(jù)市場(chǎng)分析的結(jié)果表明,如果筆記本電腦的銷售價(jià)提高的
百分率為,那么月銷售量減少的百分率為.記銷售價(jià)提高的百分率為時(shí),
電腦企業(yè)的月利潤(rùn)是(元).
(Ⅰ)寫出月利潤(rùn)(元)與的函數(shù)關(guān)系式;
(Ⅱ)試確定筆記本電腦的銷售價(jià),使得電腦企業(yè)的月利潤(rùn)最大.
19.(本小題滿分13分)
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)(4,0)且不與坐標(biāo)軸垂直的直線交橢圓于、兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的
對(duì)稱點(diǎn)為.
(?)求證:直線過軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo);
(?)求△面積的取值范圍.
20.(本小題滿分14分)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)數(shù)列滿足:,且,記數(shù)列的前n項(xiàng)和為,
且.
(?)求數(shù)列的通項(xiàng)公式;并判斷是否仍為數(shù)列中的項(xiàng)?若是,請(qǐng)證明;否則,說明理由.
(?)設(shè)為首項(xiàng)是,公差的等差數(shù)列,求證:“數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)”的充要條件是“存在整數(shù),使”.
21. 本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)(本小題滿分7分)選修4-2:矩陣與變換
若點(diǎn)在矩陣 對(duì)應(yīng)變換的作用下得到的點(diǎn)為,求矩陣的逆矩陣.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是參數(shù)),點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)是直線上的動(dòng)點(diǎn),求||的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
已知實(shí)數(shù)滿足且的最大值是7,求的值.
2009年龍巖市高中畢業(yè)班質(zhì)量檢查
說明:
一、本解答指出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則.
二、對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.
三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.
一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿分50分.
1. A 2. C 3. C 4.C 5.D 6.D 7. B 8. D 9. B 10. C
二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿分20分.
11. 12.38 12. 5 13. 3 14. 15. ②③
三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟.
16. 本小題主要考查正弦定理、三角函數(shù)的倍角公式、兩角和公式等基本知識(shí),考
查學(xué)生的運(yùn)算求解能力. 滿分13分.
解:(Ⅰ)由,知 ………………………(2分)
又,得,
, ………………………(5分)
故 ………………………(6分)
(Ⅱ) 由(Ⅰ)知,
………………………………(9分)
,
當(dāng),即時(shí),取得最大值為. ……………(13分)
17. 本題主要考查線線、線面、面面位置關(guān)系,線面角等基本知識(shí),考查空間想像能力,運(yùn)算求解能力和推理論證能力. 滿分13分.
解:(Ⅰ)證明:如圖,取中點(diǎn),連結(jié),;
∥,∥,
又,,
,…………(3分)
四邊形為平行四邊形,
∥,
又平面,平面,
∥平面. ………………………(6分)
(Ⅱ)依題意知平面平面,,
平面,得
又,.
如圖,以為原點(diǎn),建立空間直角坐標(biāo)系-xyz,
,可得、、,
.
設(shè)平面的一個(gè)法向量為,
由 得
解得,. ………………………(9分)
設(shè)線段上存在一點(diǎn),其中,則,
,
依題意:,即,
可得,解得(舍去).
所以上存在一點(diǎn). …………(13分)
18.本題主要考查函數(shù)與導(dǎo)數(shù)等基本知識(shí),考查運(yùn)用數(shù)學(xué)知識(shí)分析問題與解決問題的能力,
考查應(yīng)用意識(shí). 滿分13分.
解:(Ⅰ)依題意,
銷售價(jià)提高后為6000(1+)元/臺(tái),月銷售量為臺(tái)……………(2分)
則 ……………………(4分)
即. ……………………(6分)
(Ⅱ)
令,得,
解得舍去). ……………………(9分)
當(dāng) 當(dāng)
當(dāng)時(shí),取得最大值.
此時(shí)銷售價(jià)為元.
答:筆記本電腦的銷售價(jià)為9000元時(shí),電腦企業(yè)的月利潤(rùn)最大.…………………(13分)
19.本題主要考查直線與橢圓的位置關(guān)系、不等式的解法等基本知識(shí),考查運(yùn)算求解能力和分析問題、解決問題的能力. 滿分13分
解:(Ⅰ)因?yàn)闄E圓的一個(gè)焦點(diǎn)是(1,0),所以半焦距=1.
因?yàn)闄E圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
所以,解得
所以橢圓的標(biāo)準(zhǔn)方程為. …(4分)
(Ⅱ)(i)設(shè)直線:與聯(lián)立并消去得:.
記,,
,
. ……………(5分)
由A關(guān)于軸的對(duì)稱點(diǎn)為,得,
根據(jù)題設(shè)條件設(shè)定點(diǎn)為(,0),
得,即.
所以
即定點(diǎn)(1 , 0). ……………………………………(8分)
(ii)由(i)中判別式,解得.
可知直線過定點(diǎn) (1,0).
所以 ……………(10分)
得, 令
記,得,當(dāng)時(shí),.
在上為增函數(shù).
所以 ,
得.
故△OA1B的面積取值范圍是. ……………(13分)
20. 本題主要考查函數(shù)的單調(diào)性、等差數(shù)列、不等式等基本知識(shí),考查運(yùn)用合理的推理證明解
決問題的方法,考查分類與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿分14分.
解:(Ⅰ)因?yàn)?sub>,
所以. ………………(1分)
(i)當(dāng)時(shí),.
(ii)當(dāng)時(shí),由,得到,知在上.
(iii)當(dāng)時(shí),由,得到,知在上.
綜上,當(dāng)時(shí),遞增區(qū)間為;當(dāng)時(shí), 遞增區(qū)間為. ………………………………………(4分)
(Ⅱ)(i)因?yàn)?sub>,
所以,即,
,即. ……………………………………(6分)
因?yàn)?sub>,
當(dāng)時(shí),,
當(dāng)時(shí),,
所以. …………………………(8分)
又因?yàn)?sub>,
所以令,則
得到與矛盾,所以不在數(shù)列中. ………(9分)
(ii)充分性:若存在整數(shù),使.
設(shè)為數(shù)列中不同的兩項(xiàng),則
.
又且,所以.
即是數(shù)列的第項(xiàng). ……………………(10分)
必要性:若數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng),
則,,(,為互不相同的正整數(shù))
則,令,
得到 ,
所以,令整數(shù),所以. ……(11 分)
下證整數(shù)
若設(shè)整數(shù)則.令,
由題設(shè)取使
即,所以
即與相矛盾,所以.
綜上, 數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)的充要條件是存在整數(shù),使. ……………………(14分)
21. (1)本題主要考查矩陣乘法、逆矩陣與變換等基本知識(shí),考查運(yùn)算求解能力, 滿分7分.
解: ,即 ,
所以 得 ……………………(4分)
即M= ,由得 .
或 =1 , . …………………(7分)
(2)本題主要考查圓極坐標(biāo)方程和直線參數(shù)方程等基本知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想. 滿分7分.
解:曲線的極坐標(biāo)方程可化為,
其直角坐標(biāo)方程為,即. ……………(2分)
直線的方程為.
所以,圓心到直線的距離 ……………………(5分)
所以,的最小值為. …………………………(7分)
(3)本題主要考查柯西不等式與不等式解法等基本知識(shí),考查化歸與轉(zhuǎn)化思想. 滿分7分.
解:由柯西不等式:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com