廣東省實驗中學(xué)高三第三次階段考數(shù)學(xué)試卷2007.12

 

一、選擇題:本大題共8小題,每小題5分,滿分40分,在每小題給出的四個選項中,只有一項是符合要求的.

1.若集合,,則等于(     )

試題詳情

A.{0}      B.    C.S      D.T

試題詳情

2.等差數(shù)列的前n項和為,那么下列S13值的是                         (     )

       A.130                                         B.65                                             C.70                                             D.以上都不對

試題詳情

3、下列命題正確的是( 。

試題詳情

A.函數(shù)在區(qū)間內(nèi)單調(diào)遞增

試題詳情

B.函數(shù)的最小正周期為

試題詳情

C.函數(shù)的圖像是關(guān)于點成中心對稱的圖形

試題詳情

D.函數(shù)的圖像是關(guān)于直線成軸對稱的圖形

試題詳情

4、在△ABC中,已知向量,則△ABC為(     )                              (    )

    A.三邊均不相等的三角形             B.直角三角形

    C.等腰非等邊三角形                 D.等邊三角形

試題詳情

5、α、β為兩個互相垂直的平面,a、b為一對異面直線,下列條件:①a//α、b;②a⊥α、b;③a⊥α、b;④a//α、b且a與α的距離等于b與β的距離,

其中是a⊥b的充分條件的有 (     )                                          

A.①④           B.①          C.③            D.②③

試題詳情

A、-1      B、1     C、0       D、0或±1

試題詳情

7、A,B,C,D四個城市之間有筆直的公路相連接,客運車行駛于各城市之間,其票價與路程成正比.具體票價如圖

則BD之間的票價應(yīng)為________

試題詳情

A、7元     B、7.5元

試題詳情

C、8元     D、8.5元

 

 

 

 

 

試題詳情

8、過拋物線y=x2準(zhǔn)線上任一點作拋物線的兩條切線,若切點分別為M,N,則直線MN過定點(       )

A、 (0,1)   B、(1,0)    C、(0,-1)    D、(-1,0)

試題詳情

二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做二題,三題全答的,只計算前兩題得分.

9.若集合,若,則實數(shù)a的取值范圍是        .

試題詳情

10、已知△ABC的三個頂點A、B、C及所在平面內(nèi)一點P滿足,則點△BCP與△ABP的面積分別為s1,s2,則s1:s2=_________

試題詳情

11、數(shù)列滿足,若,則的值為____

試題詳情

12、球面上有3個點,其中任意兩點的球面距離都等于大圓周長的,經(jīng)過這3個點的小圓的周長為4π,那么這個球的直徑為               

試題詳情

13(選做題)、在直角坐標(biāo)系中將曲線C1:xy=繞原點按逆時針方向旋轉(zhuǎn)30°后得到曲線C2,則曲線C2截y軸所得的弦長為_______________________.

 

14(選做題)、已知不等式|2x-4|+|3x+3|+2|x-1|+2a-3<0的解集非空,則實數(shù)a的取值范圍為_____________

 

試題詳情

15(選做題)、如圖,在⊙O中,AB為直徑,AD為弦,過B點的切線與AD的延長線交于點C,且AD=DC,則sin∠ACO=_________

 

 

 

 

 

 

 

試題詳情

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

 

 

 

 

 

 

 

 

 

 

 

 

 

17(13分)、已知{an}為等比數(shù)列,{bn}為等差數(shù)列,其中a2=b4,a3=b2,a4=b1,且a1=64,公比q≠1

   (Ⅰ)求an,bn;

   (Ⅱ)設(shè)cn=log2an,求數(shù)列{cnan}的前n項和Tn

 

 

 

 

 

 

 

                                         

試題詳情

圖1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

19、(14分)已知函數(shù)f(x)=ax3+x2-x (a∈R且a≠0)

(1)若函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.

試題詳情

(2)證明:當(dāng)a>0時,函數(shù)在f(x)在區(qū)間()上不存在零點

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

20、(14分)設(shè)不等式組所表示的平面區(qū)域為Dn,記Dn內(nèi)的格點(格點即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點)的個數(shù)為f(n)(nN*).

   (1)求f(1)、f(2)的值及f(n)的表達(dá)式;(可以不作證明)

試題詳情

 (2)記,若對于一切正整數(shù)n,總有Tnm成立,求實數(shù)m的取值

范圍.

試題詳情

(3)(附加題,做對加4分)求證:當(dāng)n∈N+時,

 

 

 

 

 

 

 

 

 

 

 

試題詳情

21、(14分)已知點H(-3,0),點P軸上,點Q軸的正半軸上,點M在直線PQ上,且滿足, .

試題詳情

(Ⅰ)當(dāng)點P軸上移動時,求點M的軌跡C;

試題詳情

(Ⅱ)過定點作直線交軌跡C于A、B兩點,ED點關(guān)于坐標(biāo)原點O的對稱點,求證:

試題詳情

(Ⅲ)在(Ⅱ)中,是否存在垂直于軸的直線被以AD為直徑的圓截得的弦長恒為定值?若存在求出的方程;若不存在,請說明理由.

 

 

 

 

 

 

 

 

 

 

 

試題詳情

文本框:                  
              
班別__________________         姓名__________________            學(xué)號            
…………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………………………
                    廣東實驗中學(xué)第三次階段考試答卷

 

 

題號

16

17

18

19

20

21

分?jǐn)?shù)

 

 

 

 

 

 

 

 

 

試題詳情

二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做二題,三題全答的,只計算前兩題得分.

9、_________________________            10、____________________________

 

試題詳情

11、_________________________           12、____________________________

 

試題詳情

13、(選做題)__________________           14、(選做題)____________________

 

試題詳情

15、(選做題)__________________

 

試題詳情

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟

16、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

17、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

 

 

 

試題詳情

18、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

文本框:                  
              
班別__________________         姓名__________________            學(xué)號            
…………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………………………
19、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

20、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

21、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、17、解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面邊長為2,高為4是,體積最大,最大體積為16

19、

略解、(1)因為f′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當(dāng)a>0時,函數(shù)在f(x)在區(qū)間()上不存在零點

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        當(dāng)x=1時,y=2n,可取格點2n個;當(dāng)x=2時,y=n,可取格點n個

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)設(shè),

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動點M的軌跡C是以O(shè)(0,0)為頂點,以(1,0)為焦點的拋物線(除去原點).

             …………………………………………5分

(Ⅱ)解法一:(1)當(dāng)直線垂直于軸時,根據(jù)拋物線的對稱性,有;

                                                         ……………6分

(2)當(dāng)直線軸不垂直時,依題意,可設(shè)直線的方程為,則AB兩點的坐標(biāo)滿足方程組

消去并整理,得

,

.   ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.

綜合(1)、(2)可知.                  …………………10分

解法二:依題意,設(shè)直線的方程為,則AB兩點的坐標(biāo)滿足方程組:

消去并整理,得

,

. ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.        ……………………………………………………10分

(Ⅲ)假設(shè)存在滿足條件的直線,其方程為AD的中點為,AD為直徑的圓相交于點FG,FG的中點為H,則,點的坐標(biāo)為.

,

,

 .                  …………………………12分

,

,得

此時,.

∴當(dāng),即時,(定值).

∴當(dāng)時,滿足條件的直線存在,其方程為;當(dāng)時,滿足條件的直線不存在.    

 

 

 


同步練習(xí)冊答案
<s id="wrqoe"><menu id="wrqoe"><listing id="wrqoe"></listing></menu></s>
  • <pre id="wrqoe"><tt id="wrqoe"></tt></pre>
      <pre id="wrqoe"></pre>