題目列表(包括答案和解析)
已知圓C1的方程為x2+(y-2)2=1,定直線l的方程為y=1.動圓C與圓C1外切,且與直線l相切.
(Ⅰ)求動圓圓心C的軌跡M的方程;
(Ⅱ)斜率為k的直線l與軌跡m相切于第一象限的點P,過點P作直線l的垂線恰好經(jīng)過點A(0,6),并交軌跡M于異于點P的點Q,記S為△POQ(O為坐標原點)的面積,求S的值.
選修4-4:坐標系與參數(shù)方程
已知P為半圓C:(為參數(shù),0≤≤)上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與C的弧的長度均為.
(Ⅰ)以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(Ⅱ)求直線AM的參數(shù)方程.
(24)選修4-5:不等式選講
已知a,b,c均為正數(shù),證明:a2+b2+c2+≥6,并確定a,b,c為何值時,
等號成立.
(定義法)已知圓的方程為x2+y2=100,點A的坐標為(-6,0),M為圓O上的任意一點,AM的垂直平分線交OM于點P,則點P的軌跡方程為( ).
A.+=1
B.-=1
C.+=1
D.-=1
已知橢圓過點(-3,2),離心率為,圓O的圓心為坐標原點,直徑為橢圓的短軸,圓M的方程為(x-8)2+(y-6)2=4.過圓M上任一點P作圓O的切線PA,PB,切點為A,B.
(1)求橢圓的方程;
(2)若直線PA與圓M的另一交點為Q,當弦PQ最大時,求直線PA的直線方程;
(3)求的最值.
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com