題目列表(包括答案和解析)
(本小題滿分14分)已知橢圓的中心在坐標(biāo)原點,焦點在軸上,長軸長為,離心率為,經(jīng)過其左焦點的直線交橢圓于、兩點(I)求橢圓的方程;
(II)在軸上是否存在一點,使得恒為常數(shù)?若存在,求出點的坐標(biāo)和這個常數(shù);若不存在,說明理由.
(本小題滿分14分)已知橢圓:的離心率是,其左、右頂點分別為,,為短軸的端點,△的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓的右焦點,若點是橢圓上異于,的任意一點,直線,與直線分別交于,兩點,證明:以為直徑的圓與直線相切于點.
(本小題滿分14分)
已知橢圓的離心率為,其中左焦點F(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,
求m的值.
(本小題滿分14分)
已知橢圓的離心率為其左、右焦點分別為,點P是坐標(biāo)平面內(nèi)一點,且(O為坐標(biāo)原點)。
(1)求橢圓C的方程;
(2)過點且斜率為k的動直線交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出M的坐標(biāo);若不存在,說明理由。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com