已知點(diǎn)A.B.C的坐標(biāo)分別為A.C.. (1)若.求角α的值, (2)若.求的值. 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)E、F的坐標(biāo)分別是(-2,0)、(2,0),直線EP、FP相交于點(diǎn)P,且它們的斜率之積為-
1
4

(1)求證:點(diǎn)P的軌跡在一個(gè)橢圓C上,并寫出橢圓C的方程;
(2)設(shè)過原點(diǎn)O的直線AB交(1)中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為(1,
1
2
)
,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB;
(3)反思(2)題的解答,當(dāng)△MAB的面積取得最大值時(shí),探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點(diǎn)M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個(gè)特例),試提出一個(gè)猜想或設(shè)計(jì)一個(gè)問題,嘗試研究解決.
[說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評(píng)分].

查看答案和解析>>

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個(gè)點(diǎn)M(x,y)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點(diǎn)M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線C1的極坐標(biāo)方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)直線?上有一定點(diǎn)P(1,0),曲線C1與?交于M,N兩點(diǎn),求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(本題滿分14分)

已知向量,函數(shù),且圖象上一個(gè)最高點(diǎn)的坐標(biāo)為,與之相鄰的一個(gè)最低點(diǎn)的坐標(biāo)為.

(Ⅰ)求的解析式;

(Ⅱ)在△ABC中,是角A、B、C所對(duì)的邊,且滿足,求角B的大小以及的取值范圍.

 

查看答案和解析>>

本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個(gè)屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對(duì)應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標(biāo)系xOy中的原點(diǎn)O為 極點(diǎn),x軸的非負(fù)半軸為極軸,圓C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標(biāo)方程;
(Ⅱ) P為圓C上的點(diǎn),求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知矩陣A=有一個(gè)屬于特征值1的特征向量
(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對(duì)應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以直角坐標(biāo)系xOy中的原點(diǎn)O為 極點(diǎn),x軸的非負(fù)半軸為極軸,圓C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標(biāo)方程;
(Ⅱ) P為圓C上的點(diǎn),求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案