21.[解](1)由題意.. - [解](2)∵函數遞減. ∴對每個自然數.有>>. 則以..為邊長能構成一個三角形的充要條件是+>. 即. - 解得. ∴ - [解](3)∵. ∴. . - 于是, 數列是一個遞減的等差數列. 因此.當且僅當.且時.數列的前項的和最大. 由. 得. ∴ - 查看更多

 

題目列表(包括答案和解析)

 [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對的邊分別為a,b,c,設S為△ABC的面積,滿足。

(Ⅰ)求角C的大;

(Ⅱ)求的最大值。

 (Ⅰ)解:由題意可知

absinC=,2abcosC.

所以tanC=.

因為0<C<,

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

當△ABC為正三角形時取等號,

所以sinA+sinB的最大值是.

 

 


 [番茄花園1]1.

查看答案和解析>>

已知函數f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當

從而,

所以因為函數在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.

 

查看答案和解析>>

已知函數的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,,上恒成立。因此上單調遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,,故上單調遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

設函數f(x)=在[1,+∞上為增函數.  

(1)求正實數a的取值范圍;

(2)比較的大小,說明理由;

(3)求證:(n∈N*, n≥2)

【解析】第一問中,利用

解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數,

∴n≥2時:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>


同步練習冊答案