的條件下,若.求二面角的平面角的正切值. 查看更多

 

題目列表(包括答案和解析)

()(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是地面邊長的倍,P為側棱SD上的點。   

(Ⅰ)求證:ACSD

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

如下圖,矩形ABCD|AB|=1,|BC|=aPA⊥平面ABCD,|PA|=1。

(1)BC邊上是否存在點Q,使得PQQD,并說明理由;

(2)若BC邊上存在唯一的點Q使得PQQD,指出點Q的位置,并求出此時AD與平面

PDQ所成的角的正弦值;

(3)在(2)的條件下,求二面角Q―PD―A的正弦值。

查看答案和解析>>

(2013•房山區(qū)一模)在四棱錐P-ABCD中,側面PAD⊥底面ABCD,ABCD為直角梯形,BC∥AD,∠ADC=90°,BC=CD=
12
AD=1
,PA=PD,E,F(xiàn)為AD,PC的中點.
(Ⅰ)求證:PA∥平面BEF;
(Ⅱ)若PC與AB所成角為45°,求PE的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.

查看答案和解析>>

(本題滿分12分)

在三棱柱ABC-A1B1C1中,∠ACB=,AC=CB=1,D1是線段A1B1上一動點(可以與A1或B1重合)。過D1和CC1的平面與AB交于D。

(1)若四邊形CDD1C1總是矩形,求證:三棱柱ABC-A1B1C1為直三棱柱;

(2)在(1)的條件下,求二面角B-AD1-C的取值范圍。

   

 

查看答案和解析>>

在正四棱錐S—ABCD中,E是BC的中點,P點在側面△SCD內及其邊界上運動,并且總是保持PE⊥AC.

(1)指出動點P的軌跡(即說明動點P在滿足給定的條件下運動時所形成的圖形),證明你的結論;

(2)以軌跡上的動點P為頂點的三棱錐P-CDE的最大體積是正四棱錐S—ABCD體積的幾分之幾?

(3)設動點P在G點的位置時三棱錐P-CDE的體積取最大值V1,二面角G—DE—C的大小為α,二面角G—CE—D的大小為β,求tanα∶tanβ的值;

(4)若將“E是BC的中點”改為“E是BC上異于B、C的一定點”,其他條件不變,請指出點P的軌跡,證明你的結論.

查看答案和解析>>


同步練習冊答案