題目列表(包括答案和解析)
零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
下列一組命題:
①在區(qū)間內(nèi)任取兩個實數(shù),求事件“恒成立”的概率是;
②從200個元素中抽取20個樣本,若采用系統(tǒng)抽樣的方法則應(yīng)分為10組,每組抽取2個;
③函數(shù)關(guān)于(3,0)點對稱,滿足,且當(dāng)時函數(shù)為增函數(shù),則在上為減函數(shù);
④命題“對任意,方程有實數(shù)解”的否定形式為“存在,方程無實數(shù)解”。
以上命題中正確的是
本題12分)已知從“神七”飛船帶回的某種植物種子每粒成功發(fā)芽的概率都為,某
植物研究所進(jìn)行該種子的發(fā)芽實驗,每次實驗種一粒種子, 每次實驗結(jié)果相互獨立. 假定某
次實驗種子發(fā)芽則稱該次實驗是成功的,如果種子沒有發(fā)芽,則稱該次實驗是失敗的.若該
研究所共進(jìn)行四次實驗, 設(shè)表示四次實驗結(jié)束時實驗成功的次數(shù)與失敗的次數(shù)之差的絕對
值.
⑴ 求隨機變量的分布列及的數(shù)學(xué)期望;
⑵ 記“不等式的解集是實數(shù)集”為事件,求事件發(fā)生的概率.
一、填空題:本大題共14小題,每小題5分,共70分.
1. 2.2i 3.()或() 4.16 5.a(chǎn)≥-8 6.64 7.(1)(3)(4) 8.6 9. 10. 11.1 12. 13.(-∞,1)
14.,提示:設(shè),則,故為增函數(shù),由a<b,有,也可以考慮特例,如f(x)=x2
二、解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
15.(1)
5分
即
為等腰三角形. 8分
(2)由(I)知
12分
14分
16.(1)由圖形可知該四棱錐和底面ABCD是菱形,且有一角為,邊長為2,
錐體高度為1。
設(shè)AC,BD和交點為O,連OE,OE為△DPB的中位線,
OE//PB, 3分
EO面EAC,PB面EAC內(nèi),PB//面AEC。 6分
(2)過O作OFPA垂足為F ,
在Rt△POA中,PO=1,AO=,PA=2,在Rt△POB中,PO=1,BO=1,PB=, 8分
過B作PA的垂線BF,垂足為F,連DF,由于△PAB≌△PAD,故DF⊥PA,DF∩BF=F,因此PA⊥面BDF. 10分
在等腰三角形PAB中解得AF=,進(jìn)而得PF=
即當(dāng)時,PA面BDF, 12分
此時F到平面BDC的距離FH=
14分
17.(1) 4分
橢圓方程為 7分
(2) 10分
=2 14分
所以P在DB延長線與橢圓交點處,Q在PA延長線與圓的交點處,得到最大值為. 15分
18.(1)DM=,DN=,MF=,EN=, 4分
=EF=DM+DN-MF-EN=+--
= () 7分
(2)“平板車要想順利通過直角走廊”即對任意角(),平板車的長度不能超過,即平板車的長度;記 ,有=,
===, 10分
此后研究函數(shù)的最小值,方法很多;如換元(記,則)或直接求導(dǎo),以確定函數(shù)在上的單調(diào)性;當(dāng)時取得最小值。 15分
19. (1)點(n,)在直線y=x+上,∴=n+,即Sn=n2+n,
an=n+5. 3分
∵bn+2-2bn+1+bn=0(nÎN*),∴bn+2-bn+1= bn+1-bn=…= b2-b1.
∴數(shù)列{bn}是等差數(shù)列,∵b3=11,它的前9項和為153,設(shè)公差為d,
則b1+2d=11,9b1+×d=153,解得b1=5,d=3.∴bn=3n+2. 6分
(2)由(1)得,cn= = =(-),
∴Tn=b1+b2+b3+…+bn=(1-)+(-)+(-)+…+(-)
=(1-). 9分
∵Tn=(1-)在nÎN*上是單調(diào)遞增的,∴Tn的最小值為T1=.
∵不等式Tn>對一切nÎN*都成立,∴<.∴k<19.∴最大正整數(shù)k的值為18.11分
(3) nÎN*,f(n)==
當(dāng)m為奇數(shù)時,m+15為偶數(shù);當(dāng)m為偶數(shù)時,m+15為奇數(shù).
若f(m+15)=
或m+15+5=5(
解得m=11.所以當(dāng)m=11時,f(m+15)=
20.(1). 2分
當(dāng)時,,在上單調(diào)遞增; 3分
當(dāng)時,時,,在上單調(diào)遞減;
時,,在上單調(diào)遞增. 5分
綜上所述,當(dāng)時,的單調(diào)遞增區(qū)間為;當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為. 6分
(2)充分性:a=1時,由(1)知,在x=1處有極小值也是最小值,
即。而在上單調(diào)遞減,在上單調(diào)遞增,
在上由唯一的一個零點x=1. 9分
必要性:=0在上有唯一解,且a>0, 由(1)知,在x=a處有極小值也是最小值f(a),f(a)=0,即.
令,.
當(dāng)時,,在上單調(diào)遞增;當(dāng)a>1時,,
在上單調(diào)遞減。,=0只有唯一解a=1.
=0在上有唯一解時必有a=1. 12分
綜上:在a>0時,=0在上有唯一解的充要條件是a=1.
(3)證明:∵1<x<2,∴.
令,∴,14分
由(1)知,當(dāng)a=1時,,∴,∴.
∴,∴F(x)在(1,2)上單調(diào)遞增,∴,
∴。∴. 16分
附加題答案
1.解:如圖,連結(jié)OC,因,因此,由于,
所以,又得; 5分
又因為,得,那么,
從而,于是。 10分
2.解:設(shè)A=,由題知=,=3
即, 5分
∴ ∴A= 10分
3.解: 直線的參數(shù)方程為 為參數(shù))故直線的普通方程為 3分
因為為橢圓上任意點,故可設(shè)其中.
因此點到直線的距離是 7分
所以當(dāng),時,取得最大值. 10分
4. 證(1)
∵,,
∴| f(x1)-f(x2)|<| x1-x2| 5分
(2),∴f(a)+f(b) ≤
∵ ,
∴ 10分
5.解:(1)為實數(shù),即為實數(shù), ∴b=3 2分
又依題意,b可取1,2,3,4,5,6
故出現(xiàn)b=3的概率為
即事件“為實數(shù)”的概率為 5分
(2)由已知, 6分
可知,b的值只能取1、2、3
當(dāng)b=1時, ,即a可取1,2,3
當(dāng)b=2時, ,即a可取1,2,3
當(dāng)b=3時, ,即a可取2
由上可知,共有7種情況下可使事件“”成立 9分
又a,b的取值情況共有36種
故事件“”的概率為 10分
6.解:(1)∵A1B
∵AC⊥CB ∴BC⊥平面A
∴A1B與平面A
(2)分別延長AC,A1D交于G. 過C作CM⊥A
∵BC⊥平面ACC
∴BM⊥A
平面A
∴CG=2,DC=1 在直角三角形CDG中,
,
即二面角B―A1D―A的平面角的正切值為 6分
(3)在線段AC上存在一點F,使得EF⊥平面A1BD .
其位置為AC中點,證明如下:
∵A1B
∵由(1)BC⊥平面A
∵EF在平面A
同理可證EF⊥BD, ∴EF⊥平面A1BD
∵E為定點,平面A1BD為定平面,點F唯一 10分
解法二:(1)同解法一 3分
(2)∵A1B
C(0,0,0) B(2,0,0) A(0,2,0)
C1(0,0,2) B1(2,0,2) A1(0,2,2)
D(0,0,1) E(1,0,2)
設(shè)平面A1BD的法向量為
平面ACC
即二面角B―A1D―A的平面角的正切值為 6分
(3)在線段AC上存在一點F,設(shè)F(0,y,0)使得EF⊥平面A1BD
欲使EF⊥平面A1BD 由(2)知,當(dāng)且僅當(dāng)//
∴存在唯一一點F(0,1,0)滿足條件. 即點F為AC中點 10分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com