題目列表(包括答案和解析)
已知數(shù)列的前項和為,且 (N*),其中.
(Ⅰ) 求的通項公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設(shè),,
則.又,也即,所以,也即,又因為,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;
②假設(shè)時,命題成立,即,
則當(dāng)時,
即
即
故當(dāng)時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時,,,故等式成立.
② 假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,成立.
設(shè)為實數(shù),首項為,公差為的等差數(shù)列的前n項和為,滿足
(1)若,求及;
(2)求d的取值范圍.
【解析】本試題主要考查了數(shù)列的求和的運(yùn)用以及通項公式的運(yùn)用。第一問中,利用和已知的,得到結(jié)論
第二問中,利用首項和公差表示,則方程是一個有解的方程,因此判別式大于等于零,因此得到d的范圍。
解:(1)因為設(shè)為實數(shù),首項為,公差為的等差數(shù)列的前n項和為,滿足
所以
(2)因為
得到關(guān)于首項的一個二次方程,則方程必定有解,結(jié)合判別式求解得到
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com