(2)證明:(1+)(1+)-(1+)<e (n∈N*.n≥2,其中無理數e=2.71828-) 查看更多

 

題目列表(包括答案和解析)

(1)若任意直線l過點F(0,1),且與函數f(x)=
1
4
x2
的圖象C交于兩個不同的點A,B,分別過點A,B作C的切線,兩切線交于點M,證明:點M的縱坐標是一個定值,并求出這個定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實數a的取值范圍;
(3)求證:
ln24
24
+
ln34
34
+
ln44
44
+…
lnn4
n4
2
e
,(其中e為無理數,約為2.71828).

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知矩陣M=()的兩^E值分別為λ1=-1和λ2=4.
(I)求實數的值;
(II )求直線x-2y-3=0在矩陣M所對應的線性變換作用下的像的方程.
(2)選修4-4:坐標系與參數方程
在直角坐標平面內,以坐標原點O為極點x軸的非負半軸為極軸建立極坐標系.已知曲線C的參數方程為,
(a為餓),曲線D的鍵標方程為ρsin(θ-)=-
(I )將曲線C的參數方程化為普通方程;
(II)判斷曲線c與曲線D的交點個數,并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實數.
(I)求證:+≥a+b;
(II)利用(I)的結論求函數y=+(0<x<1)的最小值.

查看答案和解析>>

事實證明:總存在正實數a,b(a<b)使得ab=ba,請你寫出所有符合條件的a的取值范圍是
(1,e)
(1,e)

查看答案和解析>>

g(x)=ax-
b
x
-2f(x),其中f(x)=lnx,且g(e)=be-
a
e
-2(e為自然對數的底數).
(1)求a與b的關系;
(2)若g(x)在其定義域內為增函數,求a的取值范圍;
(3)證明:①f(x)≤x-1;②
ln2
22
+
ln3
32
+…
lnn
n2
2n2-n-1
4(n+1)
(n∈N,n≥2).

查看答案和解析>>

g(x)=ax-數學公式-2f(x),其中f(x)=lnx,且g(e)=be-數學公式-2(e為自然對數的底數).
(1)求a與b的關系;
(2)若g(x)在其定義域內為增函數,求a的取值范圍;
(3)證明:①f(x)≤x-1;②數學公式+數學公式+…數學公式數學公式(n∈N,n≥2).

查看答案和解析>>

一、選擇題:

1.C  2.D  3.C  4.A   5.B  6.C  7.B   8.A   9.D  10.A  11.A  12.C

二、填空題:

13.         14. 26   15. -3    16.     17. 3         18.   

19.   20.(0,1) 21.     22.    23.765        24.5  

25.2          26.

三、解答題:

27、解:(1)∵cos3x=4cos3x-3cosx,則=4cos2x-3=2cos2x-1

∴f(x)=2cos2x-1+2sin2x

=2sin(2x+)-1                            

在2x+=2kπ+時,f(x)取得最大值2-1

即在x=kπ+ (k∈Z)時,f(x)取得最大值2-1 

(2)∵f(x)=2sin(2x+)-1

要使f(x)遞減,x滿足2kπ+≤2x+≤2kπ+

即kπ+≤x≤kπ+ (k∈Z)

又∵cosx≠0,即x≠kπ+ (k∈Z)               

      <style id="b7lgs"></style>
  1.  

    28、解:(1)p(ξ個正面向上,4-ξ個背面向上的概率,其中ξ可能取值為0,1,2,3,4。

    ∴p(ξ=0)= (1-)2(1-a)2=(1-a)2

    p(ξ=1)= (1-)(1-a)2+(1-)2?a(1-a)= (1-a)

    p(ξ=2)= ()2(1-a)2+(1-)a(1-a)+ (1-)2? a2=(1+2a-2 a2)

    p(ξ=3)= ()2a(1-a)+ (1-) a2=

    p(ξ=4)= ()2 a2=a2             

    (2) ∵0<a<1,∴p(ξ=1) <p(ξ=1),p(ξ=4) <p(ξ=3)

    則p(ξ=2)- p(ξ=1)= (1+2a-2 a2)- =-≥0

    ,即a∈[]                

    (3)由(1)知ξ的數學期望為

    Eξ=0×(1-a)2+1× (1-a)+2× (1+2a-2a2)+3×+4×=2a+1

    29、解:(1)∵EF∥CD∥AB,EG∥PB,根據面面平行的判定定理

    ∴平面EFG∥平面PAB,又PA面PAB,∴AP∥平面EFG

    (2)∵平面PDC⊥平面ABCD,AD⊥DC

    ∴AD⊥平面PCD,而BC∥AD,∴BC⊥面EFD

    過C作CR⊥EF交EF延長線于R點連GR,根據三垂線定理知

    ∠GRC即為二面角的平面角,∵GC=CR,∴∠GRC=45°,  

    故二面角G-EF-D的大小為45°。

    (3)Q點為PB的中點,取PC中點M,則QM∥BC,∴QM⊥PC

    在等腰Rt△PDC中,DM⊥PC,∴PC⊥面ADMQ         

    30、解:(1)由已知可得,=(x+3,y),=(x-3,y),=(,0),

    2()2=?,∴2(x2-9)=x2-9+y2,

    即P點的軌跡方程(1-2)x2+y2=9(1-2)

    當1-2>0,且≠0,即∈(-1,0)時,有+=1,

    ∵1-2>0,∴>0,∴x2≤9。

    ∴P點的軌跡是點A1,(-3,0)與點A2(3,0) 

    =0時,方程為x2+y2=9,P的軌跡是點A1(-3,0)與點A2(3,0)

    當1-2<0,即入∈(-∞,-1)∪(1,+∞)時,方程為-=1,P點的軌跡是雙曲線。

    當1-2=0,即=±1時,方程為y=0,P點的軌跡是射線。

    (2)過點A1且斜率為1的直線方程為y=x+3,

    =時,曲線方程為+=1,

    由(1)知,其軌跡為點A1(-3,0)與A2(3,0)

    因直線過A1(-3,0),但不過A2(3,0)。

    所以,點B不存在。

    所以,在直線x=-9上找不到點C滿足條件。         

    31、解:(理)(1)f′(x)=-+a=

    (i)若a=0時,f′(x)= >0x>0,f′(x)<0x<0

    ∴f(x)在(0,+∞)單調遞增,在(-∞,0)單調遞減。   

    (ii)若時,f′(x)≤0對x∈R恒成立。

    ∴f(x)在R上單調遞減。                          

    (iii)若-1<a<0,由f′(x)>0ax2+2x+a>0<x<

    由f′(x)<0可得x>或x<

    ∴f(x)在[,]單調遞增

    在(-∞,],[上單調遞減。

    綜上所述:若a≤-1時,f(x)在(-∞,+∞)上單調遞減。

    (2)由(1)當a=-1時,f(x)在(-∞,+∞)上單調遞減。

    當x∈(0,+∞)時f(x)<f(0)

    ∴l(xiāng)n(1+x2)-x<0 即ln(1+x2)<x

    ∴l(xiāng)n[(1+)(1+)……(1+)]

    =ln[(1+)(1+)+…ln(1+)<++…+

    =1-+-+…+=1-<1

    ∴(1+)(1+)……(1+)<e  

    32、解:(1)由題可知:與函數互為反函數,所以,

    ,  (2)因為點在函數的圖像上,所以, 

    在上式中令可得:,又因為:,,代入可解得:.所以,,(*)式可化為:

    (3)直線的方程為:,

    在其中令,得,又因為在y軸上的截距為,所以,

    =,結合①式可得:            ②

    由①可知:當自然數時,,,

    兩式作差得:

    結合②式得:         ③

    在③中,令,結合,可解得:,

    又因為:當時,,所以,舍去,得

    同上,在③中,依次令,可解得:,

    猜想:.下用數學歸納法證明.       

    (1)時,由已知條件及上述求解過程知顯然成立.

    (2)假設時命題成立,即,則由③式可得:

    代入上式并解方程得:

    由于,所以,,所以,

    符合題意,應舍去,故只有

    所以,時命題也成立.

    綜上可知:數列的通項公式為   

     

     


    同步練習冊答案