題目列表(包括答案和解析)
設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有
(Ⅰ)求f(0),判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)數(shù)列滿足,且,數(shù)列滿足 w.w.w.k.s.5.u.c.o.m
①求數(shù)列通項(xiàng)公式。
②求數(shù)列的前n項(xiàng)和Tn的最小值及相應(yīng)的n的值.
(1)求a2 007;
(2)若不等式(1+)(1+)…(1+)≥k·對一切n∈N*均成立,求k的最大值.
設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時,f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y)
(Ⅰ)求f(0),判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)數(shù)列{an}滿足a1=f(0),且
①求{an}通項(xiàng)公式.
②當(dāng)a>1時,不等式對不小于2的正整數(shù)恒成立,求x的取值范圍.
設(shè)函數(shù)是定義域?yàn)?I>R的奇函數(shù).
(1)求k值;
(2)(文)當(dāng)0<a<1時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值為-2,求m的值.
一、選擇題:DDBD CCBA
二、填空題:9、 10、-2 11、1 12、11
13、解析: 14、
15、解:(Ⅰ)時,f(x)>1
令x=-1,y=0則f(-1)=f(-1)f(0)∵f(-1)>1
∴f(0)=1
若x>0,則f(x-x)=f(0)=f(x)f(-x)故
故x∈R f(x)>0
任取x1<x2
故f(x)在R上減函數(shù)
(Ⅱ)① 由f(x)單調(diào)性
an+1=an+2 故{an}等差數(shù)列
②
是遞增數(shù)列
當(dāng)n≥2時,
即
而a>1,∴x>1
故x的取值范圍(1,+∞)
16、解:(I),
令(舍去)
單調(diào)遞增;
當(dāng)單調(diào)遞減.
上的極大值
(II)由得
, …………①
設(shè),
,
依題意知上恒成立,
,
,
上單增,要使不等式①成立,
當(dāng)且僅當(dāng)
(III)由
令,
當(dāng)上遞增;
當(dāng)上遞減
而,
恰有兩個不同實(shí)根等價于
17、解:(Ⅰ)由題可得.
所以曲線在點(diǎn)處的切線方程是:.
即.
令,得.即.顯然,∴.
(Ⅱ)由,知,同理.
故.
從而,即.所以,數(shù)列成等比數(shù)列.
故.即.
從而所以
(Ⅲ)由(Ⅱ)知,
∴∴
當(dāng)時,顯然.
當(dāng)時,
∴.
綜上,.
18、解:(I),
令(舍去)
單調(diào)遞增;
當(dāng)單調(diào)遞減.
上的極大值
(II)由得
, …………①
設(shè),
,
依題意知上恒成立,
,
,
上單增,要使不等式①成立,
當(dāng)且僅當(dāng)
(III)由
令,
當(dāng)上遞增;
當(dāng)上遞減
而,
恰有兩個不同實(shí)根等價于
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com