題目列表(包括答案和解析)
(本小題滿分12分)
如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,
D為CC1中點(diǎn)。
(1)求證:AB1⊥面A1BD;
(2)求二面角A-A1D-B的正弦值;
(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1
均為正方形,∠BAC=90°,點(diǎn)D是棱B1C1的中點(diǎn).
(1)求證:A1D⊥平面BB1C1C;
(2)求證:AB1∥平面A1DC;
(3)求二面角D-A1C-A的余弦值.
(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說明理由.
(本小題滿分12分)
如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是,D是AC的中點(diǎn).
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大;
(Ⅲ)求直線AB1與平面A1BD所成的角的正弦值.
(本小題滿分12分)如圖,在直三棱柱ABC—A1B1C1中,
∠ACB=90°,AC=BC=CC1=2.
(I)證明:AB1⊥BC1;
(II)求點(diǎn)B到平面AB1C1的距離;
(III)求二面角C1—AB1—A1的大。
一、選擇題(每小題5分,共12小題)
BADAC ABBCB CD
二、填空題(每小題4分,共4小題)
13.0
14.n+(n+1)+…+(3n-2)=(2n-1)2
15.256+64π
16.①③
三、解答題
(I)∵(2a-c)cosB=bcosC,
∴(2sinA-sinC)cosB=sinBcosC.……………………………………………2分
即2sinAcosB=sinBcosC+sinCcosB
=sin(B+C)
∵A+B+C=π,∴2sinAcosB=sinA.…………………………………………4分
∵0<A<π,∴sinA≠0.
∴cosB=.…………………………………………………………………5分
∵0<B<π,∴B=.…………………………………………………………6分
(II)=4ksinA+cos2A.…………………………………………………………7分
=-2sin2A+4ksinA+1,A∈(0,)……………………………………9分
設(shè)sinA=t,則t∈.
則=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.…………………………10分
∵k>1,∴t=1時(shí),取最大值.
依題意得,-2+4k+1=5,∴k=.………………………………………………12分
(18)(I)證明:
連接B1C,與BC1相交于O,連接OD
∵BCC1B1是矩形,
∴O是B1C的中點(diǎn).
又D是AC的中點(diǎn),
∴OD//AB1.………………………………………………2分
∵AB1面BDC1,OD面BDC1,
∴AB1//面BDC1.…………………………………………4分
(II)解:如力,建立空間直角坐標(biāo)系,則
C1(0,0,0),B(0,3,2),C(0,3,0),A(2,3,0),
D(1,3,0)……………………5分
即.…………6分
易知=(0,3,0)是面ABC的一個(gè)法向量.
.…………………………8分
∴二面角C1―BD―C的余弦值為.………………………………9分
(III)假設(shè)側(cè)棱AA1上存在一點(diǎn)P(2,y,0)(0≤y≤3),使得CP⊥面BDC1.
則
∴方程組無解.
∴假設(shè)不成立.……………………………………………………11分
∴側(cè)棱AA1上不存在點(diǎn)P,使CP⊥面BDC1.…………………12分
19.(I)解:設(shè)答對(duì)題的個(gè)數(shù)為y,得分為ξ,y=0,1,2,4
∴ξ=0,2,4,8…………………………………………………………1分
……………………………………………………3分
…………………………………………5分
…………………………………………7分
………………………………………………9分
則ξ的分布列為
ξ
0
2
4
8
P
(II)Eξ=0×+2×+4×+8×=2
答:該人得分的期望為2分………………………………12分
20.解:
(I)由題意,令y=0,x<0,得f(x)[1-f(0)]=0,∵x<0時(shí),f(x)>1.
∴1-f(0)=0. f(0)=1.…………………………………………………………2分
適合題意的f(x)的一個(gè)解析式為f(x)=()x.………………………………4分
(II)①由遞推關(guān)系知f(an+1)?f(-2-an)=1,即f(an+1-2-an)=f(0).
∵f(x)的R上單調(diào),∴an+1-an=2,(n∈N*),…………………………6分
又a1=1,故an=2n-1.……………………………………………………7分
②bn=,Sn=b1+b2+…+bn=+()3+…+()2n-1
欲比較Sn與的大小,只需比較4n與2n+1的大小.
由=1,2,3代入可知4n>2n+1,猜想4n>2n+1.……………………10分
下用數(shù)學(xué)歸納法證明
(i)當(dāng)n=1時(shí),41>2×1+1成立
(ii)假設(shè)當(dāng)n=k時(shí)命題成立,即4k>2k+1
當(dāng)n=k+1時(shí),4k+1=4×4k>4(2k+1)=8k+4=2(k+1)+1+6k+1>2(k+1)+1,
說明當(dāng)n=k+1時(shí)命題也成立.
由(i)(ii)可知,4n>2n+1 對(duì)于n∈N*都成立.
故Sn>.………………………………………………………………12分
注:證明4n>2n+1,除用數(shù)學(xué)歸納法證明以外,還可用其它方法證明,
如:4n=(1+3)n=1+
21.解:(I)定圓B的圓心坐標(biāo)B(-,0),半徑r=6,
因?yàn)閯?dòng)圓P與定圓B內(nèi)切,所以|PA|+|PB|=6.
所以動(dòng)圓圓心P的軌跡是以B、A為焦點(diǎn),長軸長為6的橢圓.
設(shè)橢圓的方程為
則2a=6,a=3,c=
∴b2=a2-c2=4.
∴橢圓的方程為.……………………4分
(II)設(shè)M(x1,y1),N(x2,y2),
則由
(1)當(dāng)λ=1時(shí),M與N重合,,滿足條件。
(2)當(dāng).
綜合可得λ的取值范圍是[,5].………………………………12分
22.解:
(I)f′(x)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,
即…………………………………………2分
解得a=1,b=0.
∴f(x)=x3-3x.……………………………………………………4分
(II)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),
當(dāng)-1<x<1時(shí),f′(x)<0,故f(x)在區(qū)間[-1,1]上為減函數(shù),
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2……………………………………6分
∵對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,
都有|f(x1)-f(x2)|≤|fmax(x) -fmin(x)|
|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4………………………………8分
(III)f′(x)=3x2-3=3(x+1)(x-1),
∵曲線方程為y=x3-3x,∴點(diǎn)A(1,m)不在曲線上.
設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿足
因,故切線的斜率為
,
整理得.
∵過點(diǎn)A(1,m)可作曲線的三條切線,
∴關(guān)于x0方程=0有三個(gè)實(shí)根.……………………10分
設(shè)g(x0)= ,則g′(x0)=6,
由g′(x0)=0,得x0=0或x0=1.
∴g(x0)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
∴函數(shù)g(x0)= 的極值點(diǎn)為x0=0,x0=1………………12分
∴關(guān)于x0方程=0有三個(gè)實(shí)根的充要條件是
,解得-3<m<-2.
故所求的實(shí)數(shù)a的取值范圍是-3<m<-2.……………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com