(1)求集合, 查看更多

 

題目列表(包括答案和解析)

集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈Z時(shí),求A的非空真子集的個(gè)數(shù);
(3)當(dāng)x∈R時(shí),沒有元素x使x∈A與x∈B同時(shí)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

集合A={x||x-2|+|x|≤a},B={x|log3
11+x
<1}

(Ⅰ)若a=4,求A∩B;
(Ⅱ)若A⊆B,求a的取值范圍.

查看答案和解析>>

集合A是由適合以下性質(zhì)的函數(shù)f(x)構(gòu)成的:對(duì)于定義域內(nèi)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)

(1)試判斷f(x)=x2及g(x)=log2x是否在集合A中,并說明理由;
(2)設(shè)f(x)∈A且定義域?yàn)椋?,+∞),值域?yàn)椋?,1),f(1)>
1
2
,試求出一個(gè)滿足以上條件的函數(shù)f (x)的解析式.

查看答案和解析>>

集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)A中的元素x∈Z時(shí),求A的非空真子集的個(gè)數(shù);
(3)當(dāng)x∈R時(shí),若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

集合D={平面向量},定義在D上的映射f,滿足對(duì)任意x∈D,均有f(x)=λx(λ∈R且λ≠0).
(1)若|
a
|=|
b
|,且
.
a
b
不共線,試證明:[f(
a
)-f(
b
)]⊥(
a
+
b
);
(2)若A(1,2),B(3,6),C(4,8),且f(
BC
)=
AB
,求f(
AC
AB

查看答案和解析>>

一、選擇題:本大題共8小題,每小題5分,滿分40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

1.D      2.B       3.D      4.A      5.C       6.D      7.C       8.A

 

二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做二題,三題全答的,只計(jì)算前兩題得分.

9.                10.(或)                       11.

12.                                             13.                                               14.

15.

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:,………………………………………………   3分

,………………………    3分

(1);…………………………………………………….   2分

(2)因?yàn)?sub>的解集為,

所以的兩根,………………………………………  2分

,所以.……………………………………. 2分

 

17.(本小題滿分12分)

解: …………………………………………  2分

…………………………………………     2分

…………………………………………………….     2分

(1)的最大值為、最小值為;……………………………………………… 2分

(2)單調(diào)增,故,……………………………  2分

從而的單調(diào)增區(qū)間為.……………………  2分

 

18.(本小題滿分14分)

(1)證明:底面,

,故

,故…………………………………………………   4分

(2)證明:,,故

的中點(diǎn),故

由(1)知,從而,故

易知,故……………………………………………… 5分

(3)過點(diǎn),垂足為,連結(jié)

由(2)知,,故是二面角的一個(gè)平面角.

設(shè),則,,

從而,故.………………   5分

說明:如學(xué)生用向量法解題,則建立坐標(biāo)系給2分,寫出相關(guān)點(diǎn)的坐標(biāo)給2分,第(1)問正確給2分,第(2)問正確給4分,第(3)問正確給4分。

 

19.(本小題滿分14分)

解:(1)拋物線方程為………………………………………………………  2分

故焦點(diǎn)的坐標(biāo)為………………………………………………………… 2分

(2)設(shè)

 

 

 

20.(本小題滿分14分)

解:(1)當(dāng)時(shí),

當(dāng)時(shí),

所以

;……………………       4分

(2)因?yàn)?sub>,

所以

當(dāng)時(shí),

當(dāng)時(shí),,

所以當(dāng),時(shí),,即;…………   5分

(3)因?yàn)?sub>,所以

因?yàn)?sub>為等比數(shù)列,則

所以(舍去),所以.…………………………       5分

 

21.(本小題滿分14分)

解:(1)由題意知,的定義域?yàn)?sub>,

      …… 1分

當(dāng)時(shí), ,函數(shù)在定義域上單調(diào)遞增.   …… 2分

(2)①由(Ⅰ)得,當(dāng)時(shí),函數(shù)無極值點(diǎn).              

時(shí),有兩個(gè)相同的解

時(shí),

時(shí),函數(shù)上無極值點(diǎn).             …… 3分

③當(dāng)時(shí),有兩個(gè)不同解,

                       

時(shí),

,

此時(shí) ,在定義域上的變化情況如下表:

 

 

 

極小值

由此表可知:時(shí),有惟一極小值點(diǎn),          …… 5分

ii)   當(dāng)時(shí),0<<1

此時(shí),,的變化情況如下表:

極大值

極小值

由此表可知:時(shí),有一個(gè)極大值和一個(gè)極小值點(diǎn);                                                     …… 7分

綜上所述:

當(dāng)且僅當(dāng)時(shí)有極值點(diǎn);                                         …… 8分

當(dāng)時(shí),有惟一最小值點(diǎn);

當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)

(3)由(2)可知當(dāng)時(shí),函數(shù)

此時(shí)有惟一極小值點(diǎn)

             …… 9分

                      …… 11分

令函數(shù)

                                               …… 12分

…… 14分

 


同步練習(xí)冊(cè)答案