題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點(diǎn)的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )
(A) (B) (C) (D)
.過點(diǎn)作圓的弦,其中弦長為整數(shù)的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
1.B 2.(文)B。ɡ恚〥 3.C 4.B 5.C 6.A 7.(文)A。ɡ恚〥 8.D 9.B 10.D 11.A 12.B
13.2 14.(0,) 15. 16.
17.恰有3個紅球的概率
有4個紅球的概率
至少有3個紅球的概率
18.∵
。1)最小正周期
。2),
∴ 時 ,∴ , ∴ a=1.
19.(甲)(1)以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系(2,0,0),B(2,2,0),C(0,2,0)設(shè)P(0,0,
∴ ,,
∴ 點(diǎn)E坐標(biāo)是(1,1,1)
(2)∵ 平面PAD, ∴ 可設(shè)F(x,0,z)=(x-1,-1,z-1)
∵ EF⊥平面PCB ∴ ,-1,2,0,
∵ ∴ ,-1,0,2,-2
∴ 點(diǎn)F的坐標(biāo)是(1,0,0),即點(diǎn)F是AD的中點(diǎn).
(乙)(1)證明:∵ 是菱形,∠=60°△是正三角形
又∵
(2) ∴ ∠BEM為所求二面角的平面角
△中,60°,Rt△中,60°
∴ , ∴ 所求二面角的正切值是2;
。3).
20.(1)設(shè)f(x)圖像上任一點(diǎn)坐標(biāo)為(x,y),點(diǎn)(x,y)關(guān)于點(diǎn)A(0,1)的對稱點(diǎn)(-x,2-y)在h(x)圖像上
∴ , ∴ ,即
。2)(文):,即在(0,上遞減, ∴ a≤-4
(理):, ∵ 在(0,上遞減,
∴ 在(0,時恒成立.即 在(0,時恒成立.
∵ (0,時, ∴.
21.(1)2007年A型車價為32+32×25%=40(萬元)
設(shè)B型車每年下降d萬元,2002,2003……2007年B型車價格為:(公差為-d)
,…… ∴ ≤40×90% ∴ 46-5d≤36 d≥2
故每年至少下降2萬元
。2)2007年到期時共有錢
>33(1+0.09+0.00324+……)=36.07692>36(萬元)
故5年到期后這筆錢夠買一輛降價后的B型車
22.(1)如圖,以AB所在直線為x軸,AB中垂線為y軸建立直角坐標(biāo)系,A(-1,0),B(1,0)
設(shè)橢圓方程為:
令 ∴
∴ 橢圓C的方程是:
。2)(文)l⊥AB時不符合,
∴ 設(shè)l:
設(shè)M(,),N(,),
∵ ∴ ,即,
∴ l:,即 經(jīng)驗(yàn)證:l與橢圓相交,
∴ 存在,l與AB的夾角是.
。ɡ恚,,l⊥AB時不符,設(shè)l:y=kx+m(k≠0)
由
M、N存在
設(shè)M(,),N(,),MN的中點(diǎn)F(,)
∴ ,
∴ ∴
∴ ∴ 且
∴ l與AB的夾角的范圍是,.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com