則.解得 查看更多

 

題目列表(包括答案和解析)

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

6. 解析:因?yàn)閒(x)=ax+b有一個(gè)零點(diǎn)是2,所以f(2)=2a+b=0,所以b=-2a,所以,所以零點(diǎn)是

一所大學(xué)圖書館有6臺(tái)復(fù)印機(jī)供學(xué)生使用管理人員發(fā)現(xiàn),每臺(tái)機(jī)器的維修費(fèi)用與其使用的時(shí)間有一定的關(guān)系,根據(jù)去年一年的記錄,得到每周使用時(shí)間(單位:小時(shí))與年維修費(fèi)用(單位:元)的數(shù)據(jù)如下:

時(shí)間

33

21

31

37

46

42

費(fèi)用

16

14

25

29

38

34

則使用時(shí)間與維修費(fèi)用之間的相關(guān)系數(shù)為        

查看答案和解析>>

某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若每團(tuán)人數(shù)在30人或30人以下,飛機(jī)票每張收費(fèi)900元;若每團(tuán)人數(shù)多于30人,則給予優(yōu)惠,每多1人,機(jī)票每張減少10元,直至每張降為450元為止,每團(tuán)乘飛機(jī),旅行社需付給航空公司包機(jī)費(fèi)1500元.

(1)寫出飛機(jī)票的價(jià)格關(guān)于人數(shù)的函數(shù);

(2)每團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?

查看答案和解析>>

解:(Ⅰ)設(shè),其半焦距為.則

   由條件知,得

   的右準(zhǔn)線方程為,即

   的準(zhǔn)線方程為

   由條件知, 所以,故

   從而,  

(Ⅱ)由題設(shè)知,設(shè),

   由,得,所以

   而,由條件,得

   由(Ⅰ)得,.從而,,即

   由,得.所以,

   故

查看答案和解析>>

,為常數(shù),離心率為的雙曲線上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過(guò)直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

【解析】第一問(wèn)中利用由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

第二問(wèn)中,,,

故直線的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

(Ⅱ)設(shè),,

故直線的方程為,即,

所以,同理可得:,

,是方程的兩個(gè)不同的根,所以

由已知易得,即

 

查看答案和解析>>


同步練習(xí)冊(cè)答案