同理可求得:. --10分 查看更多

 

題目列表(包括答案和解析)

(08年聊城市一模) 給出以下命題:

①合情推理是由特殊到一般的推理,得到的結(jié)論不一定正確,演繹推是由一般到特殊的推理,得到的結(jié)論一定正確。

②甲、乙兩同學(xué)各自獨立地考察兩個變量X、Y的線性相關(guān)關(guān)系時,發(fā)現(xiàn)兩人對X的觀察數(shù)據(jù)的平均值相等,都是s,對Y的觀察數(shù)據(jù)的平均值也相等,都是t,各自求出的回歸直線分別是l1l2,則直線l1l2必定相交于點(st)。

③某企業(yè)有職工150人,其中高級職稱15人,中級職稱45人,一般職員90人,若用分層抽樣的方法抽出一個容量為30的樣本,則一般職員應(yīng)抽出20人。

④用獨立性檢驗(2×2列聯(lián)表法)來考察兩個分類變量是否有關(guān)系時,算出的隨機變量K2的值越大,說明“X與Y有關(guān)系”成立的可能性越大。

其中真命題的序號是           (寫出所有真命題的序號)。

查看答案和解析>>

設(shè)點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當(dāng)時,試寫出拋物線上的三個定點、、的坐標(biāo),從而使得

;

(2)當(dāng)時,若,

求證:;

(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

,

.

,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為

及拋物線的定義得

,即.

因為上述表達(dá)式與點的縱坐標(biāo)無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標(biāo))滿足 ”,即:

“當(dāng)時,若,且點的縱坐標(biāo))滿足,則”.此命題為真.事實上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:

“當(dāng)時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知點),過點作拋物線的切線,切點分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率

∴直線的方程為:,又

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當(dāng)且僅當(dāng),即時取等號.

故圓面積的最小值

 

查看答案和解析>>


同步練習(xí)冊答案