19.已知有意義.則的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)在區(qū)間(﹣∞,1]恒有意義,則實(shí)數(shù)a的取值范圍是(    )。

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時(shí),,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

(本題總分14分)已知函數(shù)ax2+x-3,g(x)=-x+4lnx

h(x)=-g(x)

(1)當(dāng)a=1時(shí),求函數(shù)h(x)的極值。

(2)若函數(shù)h(x)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍。

(3)定義:對于函數(shù)F(x)和Gx),若存在直線l:y=kx+b,使得對于函數(shù)F(x)和

Gx)各自定義域內(nèi)的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,則稱直線l:y=kx+b為函數(shù)F(x)和G(x)的“隔離直線”。則當(dāng)a=1時(shí),函數(shù)g(x)是否存在“隔離直線”。若存在,求出所有的“隔離直線”。若不存在,請說明理由。

查看答案和解析>>


  已知:函數(shù)),
 。1)若函數(shù)圖象上的點(diǎn)到直線距離的最小值為,求的值;
 。2)關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;
 。3)對于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得不等式
     都成立,則稱直線為函數(shù)的“分界線”。設(shè),
     ,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存
     在,請說明理由.

查看答案和解析>>

已知函數(shù)與函數(shù)的圖象關(guān)于對稱,

(1)若的最大值為        ;

(2)設(shè)是定義在上的偶函數(shù),對任意的,都有,且當(dāng)時(shí),,若關(guān)于的方程在區(qū)間內(nèi)恰有三個(gè)不同實(shí)根,則實(shí)數(shù)的取值范圍是                

 

查看答案和解析>>


同步練習(xí)冊答案