題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題:(每小題5分,共60分)
ADBBC CDCDC BD
二、填空題:(每小題4分,共16分)
13. .
14、33
15、
16. ① ③ ⑤
三、解答題
17、【解】由題意,得
.……4分
(1)∵,,∴,
∴. ……8分
(2)由圖象變換得,平移后的函數(shù)為,而平移后的圖象關于原點對稱.
∴且,即且,
∵,∴,即.……12分
18、【解】解法一(I)證明:
連接A1B,設A1B∩AB1 = E,連接DE.
∵ABC―A1B
∴四邊形A1ABB1是正方形,
∴E是A1B的中點,
又D是BC的中點,
∴DE∥A
∵DE平面AB1D,A
∴A
(II)解:在面ABC內作DF⊥AB于點F,在面A1ABB1內作FG⊥AB1于點G,連接DG.
∵平面A1ABB1⊥平面ABC, ∴DF⊥平面A1ABB1,
∴FG是DG在平面A1ABB1上的射影, ∵FG⊥AB1, ∴DG⊥AB1
∴∠FGD是二面角B―AB1―D的平面角 …………………………6分
設A
在△ABE中,,
在Rt△DFG中,,
所以,二面角B―AB1―D的大小為 …………………………8分
(III)解:∵平面B1BCC1⊥平面ABC,且AD⊥BC,
∴AD⊥平面B1BCC1,又AD平面AB1D,∴平面B1BCC1⊥平面AB1D.
在平面B1BCC1內作CH⊥B1D交B1D的延長線于點H,
則CH的長度就是點C到平面AB1D的距離. ……………………………10分
由△CDH∽△B1DB,得
|