(3)設(shè)數(shù)列.整數(shù)103是否為數(shù)列中的項(xiàng):若是.則求出相應(yīng)的項(xiàng)數(shù),若不是.則說明理由. 查看更多

 

題目列表(包括答案和解析)

定義:對(duì)于任意n∈N*,滿足條件
an+an+2
2
an+1
且an≤M(M是與n無關(guān)的常數(shù))的無窮數(shù)列an稱為T數(shù)列.
(1)若an=-n2+9n(n∈N*),證明:數(shù)列an是T數(shù)列;
(2)設(shè)數(shù)列bn的通項(xiàng)為bn=50n-(
3
2
)n
,且數(shù)列bn是T數(shù)列,求常數(shù)M的取值范圍;
(3)設(shè)數(shù)列cn=|
p
n
-1|
(n∈N*,p>1),問數(shù)列bn是否是T數(shù)列?請(qǐng)說明理由.

查看答案和解析>>

設(shè)等差數(shù)列{an}的前n項(xiàng)和是Sn,已知S3=9,S6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)m、k,使am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,說明理由;
(3)設(shè)數(shù)列{bn}的通項(xiàng)公式為bn=3n-2.集合A={x|x=an,n∈N*},B={x|x=bn,n∈N*}.將集合A∪B中的元素從小到大依次排列,構(gòu)成數(shù)列c1,c2,c3,…,求{cn}的通項(xiàng)公式.

查看答案和解析>>

已知每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,a3,…,an,其中等于i的項(xiàng)有ki個(gè)(i=1,2,3…),設(shè)bj=k1+k2+…+kj(j=1,2,3…),g(m)=b1+b2+…+bm-nm(m=1,2,3…).
(Ⅰ)設(shè)數(shù)列A:1,2,1,4,求g(1),g(2),g(3),g(4),g(5);
(Ⅱ)若數(shù)列A滿足a1+a2+…+an-n=100,求函數(shù)g(m)的最小值.

查看答案和解析>>

已知數(shù)列{an}中,a1=
1
2
,an=
1
2
an-1+
1
2n
(n≥2),數(shù)列{bn}滿足bn=2nan
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N+),問是否存在整數(shù)λ,使得對(duì)任意n∈N+,都有cn+1>cn

查看答案和解析>>

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記bn=
4+an
1-an
 (n∈N*)
(1)求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式;
(2)記cn=b2n-b2n-1 (n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn
3
2
;
(3)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,是否存在正整數(shù)k,使得Rk≥4k成立?若存在,找出一個(gè)正整數(shù)k;若不存在,請(qǐng)說明理由.

查看答案和解析>>

一、填空題:中國(guó)數(shù)學(xué)論壇網(wǎng) http://www.mathbbs.cn 2008年03月18日正在開通

1.2   2.11   3.3   4.   5.5   6.―2   7.   8.   9.18

    2,4,6

    二、選擇題:

    13.C   14.D   15.D   16.B

    三、解答題:

    17.解:設(shè)的定義域?yàn)镈,值域?yàn)锳

        由                                                         …………2分

                            …………4分

        又                                                    …………6分

                                                              …………8分

        的定義域D不是值域A的子集

        不屬于集合M                                                             …………12分

    18.解:如圖建立空間直角坐標(biāo)系

    ∵由題意可知∠C1AC=60°,C1C=  …………2分

    、、               …………4分

                                    …………6分

    設(shè)

                                               …………8分

                         …………10分

                …………12分

    19.解:(1)                                             …………2分

                                 …………4分

                   …………6分

       (2)設(shè)                                        …………8分

      …………10分

    (m2)      …………12分

    答:當(dāng)(m2)   …………14分

    20.解:(1)=3

                                                                    …………2分

    設(shè)圓心到直線l的距離為d,則

    即直線l與圓C相離                                                   …………6分

       (2)由  …………8分

    由條件可知,                                        …………10分

    又∵向量的夾角的取值范圍是[0,π]

                                                               …………12分

                                                           …………14分

    21.解:(1)

       

                                    …………4分

       (2)                                   …………5分

       

                                                               …………8分

                                          …………10分

       (3)

                                                           …………12分

       

        故103不是數(shù)列中的項(xiàng)                                                 …………16分

    22.解:(1)易知                             …………2分

       

                                                    …………4分

       (2)

       

         (*)                                                         …………6分

       

        同理                                                                                        …………8分

       

                                                                             …………10分

       (3)

        先探索,當(dāng)m=0時(shí),直線L⊥ox軸,則ABED為矩形,由對(duì)稱性知,AE與BD相交于FK中點(diǎn)N

        且                                                                      …………11分

        猜想:當(dāng)m變化時(shí),AE與BD相交于定點(diǎn)         …………12分

        證明:設(shè)

        當(dāng)m變化時(shí)首先AE過定點(diǎn)N

     

       

        ∴KAN=KEN   ∴A、N、E三點(diǎn)共線

        同理可得B、N、D三點(diǎn)共線

        ∴AE與BD相交于定點(diǎn)                                      …………18分

     


    同步練習(xí)冊(cè)答案