C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  (  )    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、填空題:中國數(shù)學(xué)論壇網(wǎng) http://www.mathbbs.cn 2008年03月18日正在開通

1.2   2.4   3.3   4.   5.12   6.―2   7.   8.   9.18

  • <style id="5zwtq"></style>
  • 2,4,6

    二、選擇題:

    13.C   14.D   15.A   16.B

    三、解答題:

    17.解:設(shè)的定義域為D,值域為A

        由                                                         …………2分

                            …………4分

        又                                                    …………6分

                                                              …………8分

        的定義域D不是值域A的子集

        不屬于集合M                                                             …………12分

    18.解:(1)VC―PAB=VP―ABC

                                          …………5分

       (2)取AB中點D,連結(jié)CD、PD

        ∵△ABC是正三角形 ∴CD⊥AB

    PA⊥底面ABC,∴CD⊥AP,∴CD⊥平面PAB

    ∠CPD是PC與平面PAB所成的角                                          …………8分

                                                             …………11分

    ∴PC與平面PAB所成角的大小為                          …………12分

    19.解:(1)                                             …………2分

                                 …………4分

                   …………6分

       (2)設(shè)                                        …………8分

      …………10分

    (m2)      …………12分

    答:當(dāng)(m2)   …………14分

    20.解:(1)=3

                                                                    …………2分

    設(shè)圓心到直線l的距離為d,則

    即直線l與圓C相離                                                   …………6分

       (2)由  …………8分

    由條件可知,                                        …………10分

    又∵向量的夾角的取值范圍是[0,π]

                                                               …………12分

                                                           …………14分

    21.解:(1)                       …………2分

                    …………4分

       (2)由

                                …………6分

                                                                                  …………9分

       是等差數(shù)列                                                        …………10分

       (3)

       

                             …………13分

                       …………16分

    22.解:(1)∵直線L過橢圓C右焦點F

                                                       …………2分

        即

        ∴橢圓C方程為                                                  …………4分

       (2)記上任一點

       

        記P到直線G距離為d

        則                                                   …………6分

       

                                                                 …………10分

       (3)直線L與y軸交于、    …………12分

        由

                                                                            …………14分

        又由

             同理                                                        …………16分

       

                                                                            …………18分

     

     


    同步練習(xí)冊答案