題目列表(包括答案和解析)
數(shù)列的前n項(xiàng)和Sn,當(dāng)的等比中項(xiàng)
(1)求證:對(duì)于;
(2)設(shè),求Sn;
(3)對(duì),試證明:S1S2+S2S3+……+SnS
(13分)設(shè)為數(shù)列的前n項(xiàng)和,且對(duì)任意都有,記
(1)求;
(2)試比較與的大;
(3)證明:。
數(shù)列的前n項(xiàng)和記為,前項(xiàng)和記為,對(duì)給定的常數(shù),若是與無關(guān)的非零常數(shù),則稱該數(shù)列是“類和科比數(shù)列”,
(理科做以下(1)(2)(3))
(1)、已知,求數(shù)列的通項(xiàng)公式(5分);
(2)、證明(1)的數(shù)列是一個(gè) “類和科比數(shù)列”(4分);
(3)、設(shè)正數(shù)列是一個(gè)等比數(shù)列,首項(xiàng),公比,若數(shù)列是一個(gè) “類和科比數(shù)列”,探究與的關(guān)系(7分)
數(shù)列{}的前n項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若,數(shù)列的前項(xiàng)和,證明:.
數(shù)列{}的前n項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若,.求不超過的最大整數(shù)的值.
CBACA;DCADC;DB
30;9,27;1;
17. 解:易得 ………… 3分
當(dāng)a=1時(shí), B=,滿足; ………… 5分
當(dāng)時(shí),B={x|
必須,解之得 ………… 8分
綜上可知,存在這樣的實(shí)數(shù)a滿足題設(shè)成立. ………… 10分
18. 解: (1) 圖2是由四塊圖1所示地磚繞點(diǎn)按順時(shí)針旋轉(zhuǎn)后得到,△為等腰直角三角形, 四邊形是正方形. …… 4分
(2) 設(shè),則,每塊地磚的費(fèi)用為,制成△、△和四邊形三種材料的每平方米價(jià)格依次為
. …… 10分
由,當(dāng)時(shí),有最小值,即總費(fèi)用為最省.
答:當(dāng)米時(shí),總費(fèi)用最省. …… 12分
19. 解:(Ⅰ)易得,的解集為,恒成立.解得.………………… 3分
因此的對(duì)稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。 ……………………… 5分
(Ⅱ)由已知可得,則
,
令得. ………………………7分
① 若,則在上單調(diào)遞增,在上無極值;
② 若,則當(dāng)時(shí),;當(dāng)時(shí),.
當(dāng)時(shí),有極小值在區(qū)間上存在極小值,.
③ 若,則當(dāng)時(shí),;當(dāng)時(shí),.
當(dāng)時(shí),有極小值.
在區(qū)間上存在極小值 .……………… 10分
綜上所述:當(dāng)時(shí),在區(qū)間上存在極小值。………… 12分
20. 解:(Ⅰ)當(dāng)時(shí),
故,即數(shù)列的通項(xiàng)公式為 …… 4分
(Ⅱ)當(dāng)時(shí),
當(dāng)
…… 8分
由此可知,數(shù)列的前n項(xiàng)和為 …… 12分
21. 解:(Ⅰ). …… 4分
(Ⅱ)易得的值域?yàn)锳=,設(shè)函數(shù)的值域B,若對(duì)于任意總存在,使得成立,只需。 …… 6分
顯然當(dāng)時(shí),,不合題意;
當(dāng)時(shí),,故應(yīng)有,解之得: ;…… 8分
當(dāng)時(shí),,故應(yīng)有,解之得:。…… 10分
綜上所述,實(shí)數(shù)的取值范圍為。 …… 12分
22. 解:(Ⅰ).
…… 3分
(Ⅱ) …… 6分
,
由錯(cuò)位相減法得:,
所以:。 …… 8分
(Ⅲ)
為遞增數(shù)列 。
中最小項(xiàng)為 …… 12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com