兩邊取對(duì)數(shù)并利用已知不等式得 查看更多

 

題目列表(包括答案和解析)

某校高一年級(jí)數(shù)學(xué)興趣小組的同學(xué)經(jīng)過(guò)研究,證明了以下兩個(gè)結(jié)論是完全正確的:①若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱圖形,則函數(shù)y=f(x+a)-b是奇函數(shù);②若函數(shù)y=f(x+a)-b是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱圖形.請(qǐng)你利用他們的研究成果完成下列問(wèn)題:
(1)將函數(shù)g(x)=x3+6x2的圖象向右平移2個(gè)單位,再向下平移16個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解釋式,并利用已知條件中的結(jié)論求函數(shù)g(x)圖象對(duì)稱中心的坐標(biāo);
(2)求函數(shù)h(x)=log2
1-x4x
圖象對(duì)稱中心的坐標(biāo),并說(shuō)明理由.

查看答案和解析>>

已知定點(diǎn)O(0,0),A(3,0),動(dòng)點(diǎn)P到定點(diǎn)O距離與到定點(diǎn)A的距離的比值是
1
λ

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明方程表示的曲線;
(Ⅱ)當(dāng)λ=4時(shí),記動(dòng)點(diǎn)P的軌跡為曲線D.
①若M是圓E:(x-2)2+(y-4)2=64上任意一點(diǎn),過(guò)M作曲線D的切線,切點(diǎn)是N,求|MN|的取值范圍;
②已知F,G是曲線D上不同的兩點(diǎn),對(duì)于定點(diǎn)Q(-3,0),有|QF|•|QG|=4.試問(wèn)無(wú)論F,G兩點(diǎn)的位置怎樣,直線FG能恒和一個(gè)定圓相切嗎?若能,求出這個(gè)定圓的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(請(qǐng)考生在下面甲、乙兩題中任選一題做答,如果多做,則按所做的甲題計(jì)分)

甲題 :

⑴ 若關(guān)于的不等式的解集不是空集,求實(shí)數(shù)的取值范圍;

⑵ 已知實(shí)數(shù),滿足,求最小值.

 

 

 

乙題:

已知曲線C的極坐標(biāo)方程是=4cos。以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù))。

       ⑴ 將曲線C的極坐標(biāo)方程化成直角坐標(biāo)方程并把直線的參數(shù)方程轉(zhuǎn)化為普通方程;

       ⑵ 若過(guò)定點(diǎn)的直線與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)的值。

 

查看答案和解析>>

已知定點(diǎn),動(dòng)點(diǎn)到定點(diǎn)距離與到定點(diǎn)的距離的比值是.

(Ⅰ)求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明方程表示的曲線;

(Ⅱ)當(dāng)時(shí),記動(dòng)點(diǎn)的軌跡為曲線.

①若是圓上任意一點(diǎn),過(guò)作曲線的切線,切點(diǎn)是,求的取值范圍;

②已知是曲線上不同的兩點(diǎn),對(duì)于定點(diǎn),有.試問(wèn)無(wú)論,兩點(diǎn)的位置怎樣,直線能恒和一個(gè)定圓相切嗎?若能,求出這個(gè)定圓的方程;若不能,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊取對(duì)數(shù)得,兩邊對(duì)x求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是          .

 

查看答案和解析>>


同步練習(xí)冊(cè)答案