題目列表(包括答案和解析)
已知n>2,試證:logn(n+1)<log(n-1)n.
如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.
(Ⅰ)求證:點為棱的中點;
(Ⅱ)判斷四棱錐和的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知,面。由此知:從而有又點是的中點,所以,所以點為棱的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點作于點,取的中點,連。面面且相交于,面內(nèi)的直線,面!3分
又面面且相交于,且為等腰三角形,易知,面。由此知:,從而有共面,又易知面,故有從而有又點是的中點,所以,所以點為棱的中點. …6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
改革開放以來,我國高等教育事業(yè)有了突飛猛進的發(fā)展,有人記錄了某村到年十年間每年考入大學(xué)的人數(shù).為方便計算,年編號為,年編號為,…,年編號為.數(shù)據(jù)如下:
年份() |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
人數(shù)() |
3 |
5 |
8 |
11 |
13 |
14 |
17 |
22 |
30 |
31 |
(1)從這年中隨機抽取兩年,求考入大學(xué)的人數(shù)至少有年多于人的概率;
(2)根據(jù)前年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計算第年的估計值和實際值之間的差的絕對值。
【解析】(1)設(shè)考入大學(xué)人數(shù)至少有1年多于15人的事件為A則P(A)=1-= (4’)
(2)由已知數(shù)據(jù)得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)
則=, (9’)
則回歸直線方程為y=2.6x+0.2 (10’)
則第8年的估計值和真實值之間的差的絕對值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com