(2) 證:據(jù)1°得.a1?a2?-an=為證a1?a2?--an<2?n! 查看更多

 

題目列表(包括答案和解析)

已知n>2,試證:logn(n+1)<log(n-1)n.

 

查看答案和解析>>

(2013•涼山州二模)春節(jié)期間,甲乙兩社區(qū)各5人參加社區(qū)服務(wù)寫春聯(lián)活動.據(jù)統(tǒng)計得兩社區(qū)5人書寫對聯(lián)數(shù)目如徑葉圖所示.
(1)分別求甲乙兩社區(qū)書寫對聯(lián)數(shù)的平均數(shù);
(2)在對聯(lián)數(shù)不少于10的人中,甲乙兩社區(qū)各抽取1人,記其對聯(lián)數(shù)分別為a,b,設(shè)X=|a-b|,求X的值為1時的概率.

查看答案和解析>>

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.

(Ⅰ)求證:點為棱的中點;

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,

易知,。由此知:從而有又點的中點,所以,所以點為棱的中點.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。

(1)過點點,取的中點,連且相交于,面內(nèi)的直線,!3分

且相交于,且為等腰三角形,易知。由此知:,從而有共面,又易知,故有從而有又點的中點,所以,所以點為棱的中點.               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

改革開放以來,我國高等教育事業(yè)有了突飛猛進的發(fā)展,有人記錄了某村年十年間每年考入大學(xué)的人數(shù).為方便計算,年編號為年編號為,…,年編號為.數(shù)據(jù)如下:

年份(

10

人數(shù)(

11

13

14

17

22

30

31

(1)從這年中隨機抽取兩年,求考入大學(xué)的人數(shù)至少有年多于人的概率;

(2)根據(jù)前年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計算第年的估計值和實際值之間的差的絕對值。

 

【解析】(1)設(shè)考入大學(xué)人數(shù)至少有1年多于15人的事件為A則P(A)=1-=      (4’)

(2)由已知數(shù)據(jù)得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 則回歸直線方程為y=2.6x+0.2                           (10’)

則第8年的估計值和真實值之間的差的絕對值為

 

查看答案和解析>>

學(xué)數(shù)學(xué),其實是要使人聰明,使人的思維更加縝密,在美國廣為流傳的一道數(shù)學(xué)題目是:老板給你兩個加工資的方案.一是每年年末加一千元;二是每半年結(jié)束時加300元.請選擇一種.一般不擅長數(shù)學(xué)的人很容易選擇前者,因為一年加一千元總比兩個半年共加600元要多.其實,由于工資累計的,時間稍長,往往第二種方案更有利.例如在第二年的年末,依第一種方案可以加得1000+2000=3000元,而第二種方案在第一年加得300+600=900元,第二年加得900+1200=2100元,總數(shù)也是900+2100=3000元.但到了第三年,第一種方案可以得到1000+2000+3000=6000元,第二種方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元.第四年,第五年會更多.因此,你若會在公司干三年以上,則應(yīng)選擇第二種方案.
根據(jù)以上材料,解答以下問題:
(1)如果在該公司干10年,問選擇第二方案比選擇第一方案多加薪多少元?
(2)如果第二方案中得每半年加300元改成每半年加 a元,問 a取何值時,選擇第二方案總是比選擇第一方案多加薪?

查看答案和解析>>


同步練習(xí)冊答案