已知n>2,試證:logn(n+1)<log(n-1)n.

 

證法一:∵logn(n+1)- log(n-1)n

=logn(n+1)-

=

∴l(xiāng)ogn(n+1)<log(n-1)n.

證法二:=logn(n+1)·logn(n-1)

<[Equation.3(logn(n+1)+ logn(n-1))]2

=[Equation.3logn(n2-1)]2<(Equation.3lognn2)2=1.

又logn(n+1)>0, log(n-1)n.>0,

∴l(xiāng)ogn(n+1)<log(n-1)n.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=4x,過Q(2,0)作直線l.
①若l與x軸不垂直,交拋物線于A、B兩點(diǎn),是否存在x軸上一定點(diǎn)E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,請(qǐng)說明理由?
②若L與X軸垂直,拋物線的任一切線與y軸和L分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)|MT|為定值,試證之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:離心率e=
5
-1
2
的橢圓為“黃金橢圓”,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn)分別為F1(-c,0)、F2(c,0)(c>0),P為橢圓E上的任意一點(diǎn).
(1)試證:若a,b,c不是等比數(shù)列,則E一定不是“黃金橢圓”;
(2)設(shè)E為“黃金橢圓”,問:是否存在過點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足
RP
=-2
PF2
?若存在,求直線l的斜率k;若不存在,請(qǐng)說明理由;
(3)設(shè)E為“黃金橢圓”,點(diǎn)M是△PF1F2的內(nèi)心,連接PM并延長(zhǎng)交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市東城區(qū)東直門中學(xué)高三數(shù)學(xué)提高測(cè)試試卷5(理科)(解析版) 題型:解答題

已知拋物線方程為y2=4x,過Q(2,0)作直線l.
①若l與x軸不垂直,交拋物線于A、B兩點(diǎn),是否存在x軸上一定點(diǎn)E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,請(qǐng)說明理由?
②若L與X軸垂直,拋物線的任一切線與y軸和L分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)|MT|為定值,試證之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年天津市耀華中學(xué)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知拋物線方程為y2=4x,過Q(2,0)作直線l.
①若l與x軸不垂直,交拋物線于A、B兩點(diǎn),是否存在x軸上一定點(diǎn)E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,請(qǐng)說明理由?
②若L與X軸垂直,拋物線的任一切線與y軸和L分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)|MT|為定值,試證之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:解答題

已知拋物線方程為y2=4x,過Q(2,0)作直線l.
①若l與x軸不垂直,交拋物線于A、B兩點(diǎn),是否存在x軸上一定點(diǎn)E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,請(qǐng)說明理由?
②若L與X軸垂直,拋物線的任一切線與y軸和L分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)|MT|為定值,試證之.

查看答案和解析>>

同步練習(xí)冊(cè)答案