11.已知.當(dāng)時(shí)均有.則的取值范圍為 查看更多

 

題目列表(包括答案和解析)

已知,當(dāng)時(shí),均有,則實(shí)數(shù)a的取值范圍為   

查看答案和解析>>

已知數(shù)學(xué)公式,當(dāng)數(shù)學(xué)公式時(shí),均有數(shù)學(xué)公式,則實(shí)數(shù)a的取值范圍為________.

查看答案和解析>>

已知,當(dāng)時(shí),均有,則實(shí)數(shù)的取值范圍為            

查看答案和解析>>

已知a>0,且a≠1,f(x)=
1
x
-ax
,當(dāng)x∈(
1
2
,+∞)
時(shí),均有f(x)<
1
2
,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

已知偶函數(shù)f(x)對任意x均滿足f(3+x)+f(-1-x)=6,且當(dāng)x∈[1,2]時(shí),f(x)=x+2.若關(guān)于x的方程f(x)-loga(x+2)=2有五個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為( 。
A、(1,2)
B、(2,2
3
)
C、(2,2
2
)
D、(2
2
,2
3
)

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函數(shù),

方程=x2 + (m ? 2 )x + 1 = 0的兩個(gè)根在0至3之間

<m≤0

依題意得:m的取值范圍是:<m≤-1或m>0

18、解:(1),

當(dāng)a=1時(shí) 解集為

當(dāng)a>1時(shí),解集為,

當(dāng)0<a<1時(shí),解集為;

(2)依題意知f(1)是f(x)的最小值,又f(1)不可能是端點(diǎn)值,則f(1)是f(x)的一個(gè)極小值,由

19、解:(1)當(dāng)所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由題意,不妨設(shè)A點(diǎn)在第一象限,坐標(biāo)為(t,-t2-t+5)其中,

則S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.,

(舍去),t2=1.

當(dāng)時(shí),所以S(t)在上單調(diào)遞增,在上單調(diào)遞減,

所以當(dāng)t=1時(shí),ABCD的面積取得極大值也是S(t)在上的最大值。

從而當(dāng)t=1時(shí),矩形ABCD的面積取得最大值6.

20、解:

21、解:

,要使在其定義域內(nèi)為單調(diào)函數(shù),只需內(nèi)滿足:恒成立.

① 當(dāng)時(shí),,∵,∴,∴,

內(nèi)為單調(diào)遞減.  

② 當(dāng)時(shí),,對稱軸為, ∴.

只需,即時(shí),

內(nèi)為單調(diào)遞增。

 ③當(dāng)時(shí),,對稱軸為.

只需,即時(shí)恒成立.

綜上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

        由此可知

   (Ⅱ)由(I)可知當(dāng)時(shí),有

        即.

    .

  (Ⅲ) 設(shè)函數(shù)

       

        ∴函數(shù))上單調(diào)遞增,在上單調(diào)遞減.

        ∴的最小值為,即總有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案