解 原式=()=1-=1-=. 查看更多

 

題目列表(包括答案和解析)

解關于的不等式

【解析】本試題主要考查了含有參數(shù)的二次不等式的求解,

首先對于二次項系數(shù)a的情況分為三種情況來討論,

A=0,a>0,a<0,然后結(jié)合二次函數(shù)的根的情況和圖像與x軸的位置關系,得到不等式的解集。

解:①若a=0,則原不等式變?yōu)?2x+2<0即x>1

此時原不等式解集為;   

②若a>0,則。時,原不等式的解集為

ⅱ)時,原不等式的解集為

  ⅲ)時,原不等式的解集為。 

③若a<0,則原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911034560884068/SYS201207091104230776185555_ST.files/image013.png">

    原不等式的解集為。

 

查看答案和解析>>

某生產(chǎn)流水線,由于改進了設備,預計第一年產(chǎn)量的增長率為160%,以后每年的增長率是前一年的一半.設原來的產(chǎn)量是a.

(Ⅰ)寫出改進設備后的第一年,第二年,第三年的產(chǎn)量,并寫出第n年與第n-1年(n≥2,n∈N)的產(chǎn)量之間的關系式;

(Ⅱ)由于設備不斷老化,估計每年將損失年產(chǎn)量的5%,如此下去,以后每年的產(chǎn)量是否始終是逐年提高?若是,請給予證明;若不是;請說明從第幾年起,產(chǎn)量將比上一年減少?

查看答案和解析>>

某廠在一個空間容積為2000m3的密封車間內(nèi)生產(chǎn)某種化學藥品.開始生產(chǎn)后,每滿60分鐘會一次性釋放出有害氣體am3,并迅速擴散到空氣中.每次釋放有害氣體后,車間內(nèi)的凈化設備隨即自動工作20分鐘,將有害氣體的含量降至該車間內(nèi)原有有害氣體含量的r%,然后停止工作,待下一次有害氣體釋放后再繼續(xù)工作.安全生產(chǎn)條例規(guī)定:只有當車間內(nèi)的有害氣體總量不超過1.25am3時才能正常進行生產(chǎn).

(Ⅰ)當r=20時,該車間能否連續(xù)正常生產(chǎn)6.5小時?請說明理由;

(Ⅱ)能否找到一個大于20的數(shù)據(jù)r,使該車間能連續(xù)正常生產(chǎn)6.5小時?請說明理由;

(Ⅲ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)

已知該凈化設備的工作方式是:在向外釋放出室內(nèi)混合氣體(空氣和有害氣體)的同時向室內(nèi)放入等體積的新鮮空氣.已知該凈化設備的換氣量是200m3/分,試證明該設備連續(xù)工作20分鐘能夠?qū)⒂泻怏w含量降至原有有害氣體含量的20%以下.(提示:我們可以將凈化過程劃分成n次,且n趨向于無窮大.)

查看答案和解析>>

已知函數(shù)f(x)=x3+(m-4)x2-3mx+(n-6)(x∈R)的圖象關于原點對稱,m,n為實常數(shù).

(1)求m,n的值;

(2)試用單調(diào)性的定義證明f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù)

(3)當x∈[-2,2]時,不等式f(x)≥(n-logma)logma恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟.

在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種牙膏新品種時,需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用.根據(jù)試驗設計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗.

(1)

求所選用的兩種不同的添加劑的芳香度之和等于4的概率

(2)

求所選用的兩種不同的添加劑的芳香度之和不小于3的概率

查看答案和解析>>


同步練習冊答案