題目列表(包括答案和解析)
(本小題滿分12分)將一枚質(zhì)地均勻的骰子(形狀為正四面體,四個(gè)面上分別標(biāo)有數(shù)字
1,2,3,4的玩具)先后拋擲兩次,觀察拋擲后不能看到的數(shù)字的點(diǎn)數(shù)依次為.
(1)求的概率;(2)試將右側(cè)求(1)中概率P的基本語(yǔ)句補(bǔ)充完整;(3)將a,b,3的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形的概率.
(本題滿分12分) 將一枚質(zhì)地均勻且四個(gè)面上分別標(biāo)有1,2,3,4的正四面體先
后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)
字為。用表示一個(gè)基本事件。
請(qǐng)寫出所有的基本事件;
求滿足條件“為整數(shù)”的事件的概率;
求滿足條件“”的事件的概率。
(本小題滿分12分)
將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=.
(Ⅰ)求證:DE⊥AC;
(Ⅱ)求DE與平面BEC所成角的正弦值;
(Ⅲ)直線BE上是否存在一點(diǎn)M,使得CM∥平面ADE,若存在,求點(diǎn)M的位置,不存在請(qǐng)說(shuō)明理由.
|
(1)寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)如何設(shè)計(jì)x的大小,使得水箱的容積最大?
(本題12分)
有一種舞臺(tái)燈,外形是正六棱柱,在其每一個(gè)側(cè)面 (編號(hào)為①②③④⑤⑥)上安裝5只顏色各異的燈,假若每只燈正常發(fā)光的概率為0.5,若一個(gè)側(cè)面上至少有3只燈發(fā)光,則不需要更換這個(gè)面,否則需要更換這個(gè)面,假定更換一個(gè)面需要100元,用表示更換的面數(shù),用表示更換費(fèi)用。
(1)求①號(hào)面需要更換的概率;
(2)求6個(gè)面中恰好有2個(gè)面需要更換的概率;
(3)寫出的分布列,求的數(shù)學(xué)期望。
2008.9
一、(每題5分,共60分)
1.B 2.B 3.B 4.C 5.C 6.A 7.D 8.B 9.A 10.C 11.D 12.B
二、(每題5分,共20分)
13.若則 14.
15.15人 16.20
三、17.(10分)
④當(dāng)時(shí),有
綜上所述,m 的取值范圍為
……………………………………………………………(10分)
18.(12分)
解:求導(dǎo)得:,由于的圖象與直線
相切于點(diǎn)(1,-11)所以有 即:
……………………………………………………………………………(8分)
解得 ………………………………………………………(10分)
所以………………………………………………(12分)
19.(12分)
解:(1)當(dāng)時(shí),不等式化為:即…………………(2分)(2)當(dāng)時(shí),原不等式可化為:
當(dāng)時(shí),有∵∴…………(4分)
當(dāng)時(shí),原不等式可化為:
①當(dāng)即時(shí)有
②當(dāng)即時(shí)
③當(dāng)即時(shí)………………………………………(10分)
20.(12分)
解:設(shè)剪去的小正方形邊長(zhǎng)為x┩,則鐵盒的底面邊長(zhǎng)分別為:
┩,┩,所以有 得…………(2分)
設(shè)容積為U,則…………(4分)
則令得或(舍去)………(8分)當(dāng)時(shí), 當(dāng)時(shí),
∴當(dāng)時(shí),取得極大值,即的最大值為18………………(11分)
所以剪去的小正方形邊長(zhǎng)為1┩時(shí),容積最大,最大容積為18
……………………………………………………………………(12分)
21.(12分)
解:函數(shù)的導(dǎo)數(shù)令得或………………………………………………………………(2分)
當(dāng)時(shí),即時(shí),函數(shù)在上為增函數(shù),不合題意。
……………………………………………………………(4分)
當(dāng)時(shí),即時(shí),函數(shù)在上為增函數(shù),在內(nèi)為減函數(shù),在上為增函數(shù)……………………………………(8分)
依題應(yīng)有當(dāng)時(shí);當(dāng)時(shí)所以:,解得,因此所求范圍為………………(12分)
22.(12分)
(Ⅰ)設(shè),則對(duì)于都有
等價(jià)于對(duì)于恒成立!2分)
∴只需在上的最小值即可
∴與的關(guān)系如下表:
-3
(-3,-1)
-1
(-1,2)
2
(2,3)
3
+
0
-
0
+
-45+k
增
7+k
減
-20+k
增
-9+k
于是的最小值為,所以,即為所求…………………………………………………………………………(6分)
(Ⅱ)對(duì)任意都有“”
等價(jià)于“的最大值小于或等于在的最小值”……………………………………………………………………(8分)
下面求在上的最小值
列表
-3
(-3,-1)
-1
3
+
0
-
0
+
-21
增
-1
減
增
111
∴在上的最小值為-21,又在內(nèi)最大值為于是∴為所求。
………………………………………………………………(12分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com