21.若函數(shù)在(1.5)內(nèi)為減函數(shù).在區(qū)間上為增函數(shù).求實(shí)數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本題12分)已知是定義在R上的函數(shù), 且在(-1,0)和(4,5)上有相同的單調(diào)性,在(0,2)和(4,5)上

有相反的單調(diào)性.

(1) 求的值;

(2) 在函數(shù)的圖象上是否存在一點(diǎn),使得在點(diǎn)

切線斜率為?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

 

查看答案和解析>>

(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時,y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分)設(shè)函數(shù)f(x)=x3ax2+3x+5(a>0).

(1)已知f(x)在R上是單調(diào)函數(shù),求a的取值范圍;

(2)若a=2,且當(dāng)x∈[1,2]時,f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

(本題滿分12分)有一枚正方體骰子,六個面分別寫1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面向上的那一個數(shù)字”。已知b和c是先后拋擲該枚骰子得到的數(shù)字,函數(shù)=。

(Ⅰ)若先拋擲骰子得到的數(shù)字是3,求再次拋擲骰子時,使函數(shù)有零點(diǎn)的概率;

(Ⅱ) 求函數(shù)在區(qū)間(—3,+∞)是增函數(shù)的概率

 

 

查看答案和解析>>

(本題滿分12分)

設(shè)f(x)是定義在(0,+∞)上的增函數(shù),且f()=f(x)-f(y).[來源:學(xué)#科#網(wǎng)]

(1)求f(1)的值;

(2)若f(6)=1,解不等式f(x+5)-f()<2.

 

查看答案和解析>>

2008.9

一、(每題5分,共60分)

  1.B  2.B  3.B  4.C  5.C   6.A   7.D  8.B  9.A  10.C   11.D  12.B

二、(每題5分,共20分)

     13.     14.

     15.15                  16.20

三、17.(10分)

 

 

 

 

 

 

 

 

 

     ④當(dāng)時,有

     綜上所述,m 的取值范圍為

          ……………………………………………………………(10分)

18.(12分)

   解:求導(dǎo)得:,由于的圖象與直線

                                                

相切于點(diǎn)(1,-11)所以有          即:

                                        

……………………………………………………………………………(8分)

解得  ………………………………………………………(10分)

所以………………………………………………(12分)

19.(12分)

解:(1)當(dāng)時,不等式化為:…………………(2分)(2)當(dāng)時,原不等式可化為:

     當(dāng)時,有…………(4分)

當(dāng)時,原不等式可化為:

①當(dāng)時有

②當(dāng)

③當(dāng)………………………………………(10分)

20.(12分)

   解:設(shè)剪去的小正方形邊長為x┩,則鐵盒的底面邊長分別為:

                               

┩,┩,所以有      得…………(2分)

                               

設(shè)容積為U,則…………(4分)

(舍去)………(8分)當(dāng)時,   當(dāng)時,

∴當(dāng)時,取得極大值,即的最大值為18………………(11分)

所以剪去的小正方形邊長為1┩時,容積最大,最大容積為18

……………………………………………………………………(12分)

21.(12分)

解:函數(shù)的導(dǎo)數(shù)………………………………………………………………(2分)

當(dāng)時,即時,函數(shù)上為增函數(shù),不合題意。

……………………………………………………………(4分)

當(dāng)時,即時,函數(shù)上為增函數(shù),在內(nèi)為減函數(shù),在上為增函數(shù)……………………………………(8分)

依題應(yīng)有當(dāng);當(dāng)所以:,解得,因此所求范圍為………………(12分)

22.(12分)

(Ⅰ)設(shè),則對于都有

等價于對于恒成立!2分)

∴只需上的最小值即可

的關(guān)系如下表:

-3

(-3,-1)

-1

(-1,2)

2

(2,3)

3

 

+

0

-

0

+

 

-45+k

7+k

-20+k

-9+k

于是的最小值為,所以,即為所求…………………………………………………………………………(6分)

(Ⅱ)對任意都有“

等價于“的最大值小于或等于的最小值”……………………………………………………………………(8分)

下面求上的最小值

列表

-3

(-3,-1)

-1

3

 

+

0

-

0

+

 

-21

-1

111

上的最小值為-21,又內(nèi)最大值為于是為所求。

………………………………………………………………(12分)


同步練習(xí)冊答案