題目列表(包括答案和解析)
16π | 3 |
16π |
3 |
4 | 16 |
n | a |
n | a |
(16分)有如下結(jié)論:“圓上一點(diǎn)處的切線(xiàn)方程為”,類(lèi)比也有結(jié)論:“橢圓處的切線(xiàn)方程為”,過(guò)橢圓C:的右準(zhǔn)線(xiàn)l上任意一點(diǎn)M引橢圓C的兩條切線(xiàn),切點(diǎn)為 A、B.
(1)求證:直線(xiàn)AB恒過(guò)一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積
2008.9
一、(每題5分,共60分)
1.B 2.B 3.B 4.C 5.C 6.A 7.D 8.B 9.A 10.C 11.D 12.B
二、(每題5分,共20分)
13.若則 14.
15.15人 16.20
三、17.(10分)
④當(dāng)時(shí),有
綜上所述,m 的取值范圍為
……………………………………………………………(10分)
18.(12分)
解:求導(dǎo)得:,由于的圖象與直線(xiàn)
相切于點(diǎn)(1,-11)所以有 即:
……………………………………………………………………………(8分)
解得 ………………………………………………………(10分)
所以………………………………………………(12分)
19.(12分)
解:(1)當(dāng)時(shí),不等式化為:即…………………(2分)(2)當(dāng)時(shí),原不等式可化為:
當(dāng)時(shí),有∵∴…………(4分)
當(dāng)時(shí),原不等式可化為:
①當(dāng)即時(shí)有
②當(dāng)即時(shí)
③當(dāng)即時(shí)………………………………………(10分)
20.(12分)
解:設(shè)剪去的小正方形邊長(zhǎng)為x┩,則鐵盒的底面邊長(zhǎng)分別為:
┩,┩,所以有 得…………(2分)
設(shè)容積為U,則…………(4分)
則令得或(舍去)………(8分)當(dāng)時(shí), 當(dāng)時(shí),
∴當(dāng)時(shí),取得極大值,即的最大值為18………………(11分)
所以剪去的小正方形邊長(zhǎng)為1┩時(shí),容積最大,最大容積為18
……………………………………………………………………(12分)
21.(12分)
解:函數(shù)的導(dǎo)數(shù)令得或………………………………………………………………(2分)
當(dāng)時(shí),即時(shí),函數(shù)在上為增函數(shù),不合題意。
……………………………………………………………(4分)
當(dāng)時(shí),即時(shí),函數(shù)在上為增函數(shù),在內(nèi)為減函數(shù),在上為增函數(shù)……………………………………(8分)
依題應(yīng)有當(dāng)時(shí);當(dāng)時(shí)所以:,解得,因此所求范圍為………………(12分)
22.(12分)
(Ⅰ)設(shè),則對(duì)于都有
等價(jià)于對(duì)于恒成立!2分)
∴只需在上的最小值即可
∴與的關(guān)系如下表:
-3
(-3,-1)
-1
(-1,2)
2
(2,3)
3
+
0
-
0
+
-45+k
增
7+k
減
-20+k
增
-9+k
于是的最小值為,所以,即為所求…………………………………………………………………………(6分)
(Ⅱ)對(duì)任意都有“”
等價(jià)于“的最大值小于或等于在的最小值”……………………………………………………………………(8分)
下面求在上的最小值
列表
-3
(-3,-1)
-1
3
+
0
-
0
+
-21
增
-1
減
增
111
∴在上的最小值為-21,又在內(nèi)最大值為于是∴為所求。
………………………………………………………………(12分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com