B. 查看更多

 

題目列表(包括答案和解析)

B.已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對應(yīng)的一個(gè)特征向量.
C.在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

B.(不等式選做題)若關(guān)于x的方程x2+x+|a-
14
|+|a|=0(a∈R)
有實(shí)根,則a的取值范圍是
 

查看答案和解析>>

B.選修4-2:矩陣與變換

試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

查看答案和解析>>

B.選修4-2:矩陣與變換
已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到
(1)求實(shí)數(shù)的值;
(2)矩陣A的特征值和特征向量.

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

        <rt id="g8lsk"></rt>
          1. 2,4,6

            13.    14.7   15.2    16.

            17.17.解:(1)  --------------------2分

             --------------------4分

            --------------------6分

            .--------------------8分

            當(dāng)時(shí)(9分),取最大值.--------------------10分

            (2)當(dāng)時(shí),,即,--------------------11分

            解得.-------------------- 12分

            18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

            ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

            解法二  “有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn)∵每次摸出一球得白球的概率為

            ∴“有放回摸兩次,顏色不同”的概率為

            (2)設(shè)摸得白球的個(gè)數(shù)為,依題意得

            19.方法一

             

               (2)

            20.解:(1)

              ∵ x≥1. ∴ ,-----------------------------------------------------2分

               (當(dāng)x=1時(shí),取最小值).

              ∴ a<3(a=3時(shí)也符合題意). ∴ a≤3.------------------------------------4分

             。2),即27-6a+3=0, ∴ a=5,.------------6分

            ,或 (舍去) --------------------------8分

            當(dāng)時(shí),; 當(dāng)時(shí),

              即當(dāng)時(shí),有極小值.又    ---------10分

               ∴ fx)在上的最小值是,最大值是. ----------12分

            21.解:(Ⅰ)∵,∴,

            ∵數(shù)列{}的各項(xiàng)均為正數(shù),∴

            ,

            ),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

            的等差中項(xiàng),

            ,∴,

            ∴數(shù)列{}的通項(xiàng)公式.……………………………………………………6分

               (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

                  1

               ②

            ②-1得,

            =……………………………10分

            要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

            ∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

            22.解:(Ⅰ)由已知得

             

                          …………4分

              (Ⅱ)設(shè)P點(diǎn)坐標(biāo)為(x,y)(x>0),由

                    

                                   …………5分    

                     ∴   消去m,n可得

                         ,又因     8分 

                    ∴ P點(diǎn)的軌跡方程為  

                    它表示以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,且實(shí)軸長為2,焦距為4的雙曲線

            的右支             …………9分

            (Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

                    

                    即                          

             易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

                    又     

                   設(shè),則

                   ∵  l與C的兩個(gè)交點(diǎn)軸的右側(cè)

                      

                   ∴ ,即     

            又由  同理可得       …………11分

                    由

                   

                 ∴

               由

                       

              由

                       

            消去

            解之得: ,滿足                …………13分

            故所求直線l存在,其方程為:  …………14分

             

             


            同步練習(xí)冊答案