1.若.求證:平面平面, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系中,O為坐標(biāo)原點,給定兩點M(1,-3)N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R)

(Ⅰ)求點C的軌跡方程;
(Ⅱ)設(shè)點C的軌跡與拋物線y2=4x交于A、B兩點,求證:
OA
OB
;
(Ⅲ)求以AB為直徑的圓的方程.

查看答案和解析>>

平面直角坐標(biāo)系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個點
(n∈N*,k、b均為非零常數(shù)).
(1)若數(shù)列{xn}成等差數(shù)列,求證:數(shù)列{yn}也成等差數(shù)列;
(2)若點P是直線l上一點,且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若點P滿足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我們稱
OP
是向量
OA1
,
OA2
,…,
OAn
的線性組合,{an}是該線性組合的系數(shù)數(shù)列.當(dāng)
OP
是向量
OA1
,
OA2
,…,
OAn
的線性組合時,請參考以下線索:
①系數(shù)數(shù)列{an}需滿足怎樣的條件,點P會落在直線l上?
②若點P落在直線l上,系數(shù)數(shù)列{an}會滿足怎樣的結(jié)論?
③能否根據(jù)你給出的系數(shù)數(shù)列{an}滿足的條件,確定在直線l上的點P的個數(shù)或坐標(biāo)?
試提出一個相關(guān)命題(或猜想)并開展研究,寫出你的研究過程.[本小題將根據(jù)你提出的命題(或猜想)的完備程度和研究過程中體現(xiàn)的思維層次,給予不同的評分].

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知兩點M(1,-3)、N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
(Ⅰ)求證:
OA
OB

(Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

平面向量
a
=(
3
,-1)
,
b
=(
1
2
,
3
2
)
,若存在不同時為o的實數(shù)k和x,使
m
=
a
+(x2-3)
b
,
n
=-k
a
+x
b
,
m
n

(Ⅰ)試求函數(shù)關(guān)系式k=f(x).
(Ⅱ)對(Ⅰ)中的f(x),設(shè)h(x)=4f(x)-ax2在[1,+∞)上是單調(diào)函數(shù).
①求實數(shù)a的取值范圍;
②當(dāng)a=-1時,如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求證:h(x0)=x0

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點,給定兩點A(1,0)、B(0,-2),點C滿足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于兩點M、N,且以MN為直徑的圓過原點,求證:
1
a2
+
1
b2
為定值
;
(3)在(2)的條件下,若橢圓的離心率不大于
2
2
,求橢圓長軸長的取值范圍.

查看答案和解析>>

17.本題滿分14分.已知函數(shù)。

(1)       求函數(shù)上的值域;

(2)       在中,若,求的值。

16

21.本小題滿分12分.

已知函數(shù)fx.=lnx-,

(I)        求函數(shù)fx.的單調(diào)增區(qū)間;

(II)     若函數(shù)fx.在[1,e]上的最小值為,求實數(shù)a的值。

3.已知,則的值為    .

A.-2          B.-1        C.1             D.2

19.解:1.∵,

,

,

,.

2.∵,,∴,

,∴,

,∴,

.

20.此題主要考查數(shù)列.等差.等比數(shù)列的概念.?dāng)?shù)列的遞推公式.?dāng)?shù)列前n項和的求法

  同時考查學(xué)生的分析問題與解決問題的能力,邏輯推理能力及運算能力.

解:I.

    

Ⅱ.

16.本題滿分14分.

解:1.連,四邊形菱形   ,

www.ks5u.com

  的中點,

               ,

                   

2.當(dāng)時,使得,連,交,則 的中點,又上中線,為正三角形的中心,令菱形的邊長為,則,

           

       

   即:   。

22.本小題滿分14分.

解:I.1.,

    !1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   ii.在

    由

          

           ,

   

    當(dāng);

    ;

    .……………………………………6分

    面

    ,

    且

    又

    ,

   

    ……………9分

   Ⅱ.當(dāng)

    ①;

    ②當(dāng)時,

    ,

   

    ③

    從面得;

    綜上得,.………………………14分

 

 


同步練習(xí)冊答案