(2)由解得 所以第10個(gè)月更換刀具. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),其中.

  (1)若處取得極值,求曲線在點(diǎn)處的切線方程;

  (2)討論函數(shù)的單調(diào)性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時(shí),可得求曲線在點(diǎn)

處的切線方程為:

第二問中,易得的分母大于零,

①當(dāng)時(shí), ,函數(shù)上單調(diào)遞增;

②當(dāng)時(shí),由可得,由解得

第三問,當(dāng)時(shí)由(2)可知,上處取得最小值,

當(dāng)時(shí)由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時(shí),求的取值范圍是

 

查看答案和解析>>

某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.

     視覺         [來源:]

視覺記憶能力

偏低

中等

偏高

超常

聽覺

記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為

(I)試確定、的值;

(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;

(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望

【解析】1)中由表格數(shù)據(jù)可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學(xué)生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分

所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分

(2)中由表格數(shù)據(jù)可知,具有聽覺記憶能力或視覺記憶能力超常的學(xué)生共有8人.

方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生”為事件B,

則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生”為事件

(3)中由于從40位學(xué)生中任意抽取3位的結(jié)果數(shù)為,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生共24人,從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結(jié)果數(shù)為,………………………7分

所以從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為,k=0,1,2,3

 

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,.

由條件,得方程組,解得

所以,,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對(duì)任意成立.

 

查看答案和解析>>

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡(jiǎn)單的圓冤啊位置關(guān)系的運(yùn)用

(1)中,借助于公式,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.

(I),,由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得

即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=.

(Ⅰ)若△ABC的面積等于,求a、b;

(Ⅱ)若,求△ABC的面積.

【解析】第一問中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于,所以,得聯(lián)立方程,解方程組得.

第二問中。由于即為即.

當(dāng)時(shí), , ,   所以當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組,解得,得到。

解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分

又因?yàn)椤鰽BC的面積等于,所以,得,………1分

聯(lián)立方程,解方程組得.                 ……………2分

(Ⅱ)由題意得

.             …………2分

當(dāng)時(shí), , ,           ……1分

所以        ………………1分

當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組

,解得,;   所以

 

查看答案和解析>>


同步練習(xí)冊(cè)答案