題目列表(包括答案和解析)
給出下列四個(gè)命題:
①若函數(shù)在區(qū)間上為減函數(shù),則;
②函數(shù)的定義域是;
③當(dāng)且時(shí),有;
④若M是圓上的任意一點(diǎn),則點(diǎn)M關(guān)于直線的對(duì)稱(chēng)點(diǎn)也在該圓上。
所有正確命題的序號(hào)是 。
(08年哈六中)給出下列四個(gè)命題:
①若函數(shù)在區(qū)間上為減函數(shù),則
②函數(shù)的定義域是
③當(dāng)且時(shí),有
④圓上任意一點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)M’也在該圓上。所有正確命題的題號(hào)為_(kāi)____________.
某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻(時(shí)) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且.
(1)令, ,寫(xiě)出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;
(2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?
【解析】第一問(wèn)利用定義法求證單調(diào)性,并判定結(jié)論。
第二問(wèn)(2)由函數(shù)的單調(diào)性知,
∴,即t的取值范圍是.
當(dāng)時(shí),記
則
∵在上單調(diào)遞減,在上單調(diào)遞增,
第三問(wèn)因?yàn)楫?dāng)且僅當(dāng)時(shí),.
故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).
某校從參加高三年級(jí)理科綜合物理考試的學(xué)生中隨機(jī)抽出名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段,…后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(Ⅰ)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的
平均分;
(Ⅲ)若從名學(xué)生中隨機(jī)抽取人,抽到的學(xué)生成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139372351665897_ST.files/image007.png">記分,在記分,
在記分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學(xué)期望.
【解析】(1)中利用直方圖中面積和為1,可以求解得到分?jǐn)?shù)在內(nèi)的頻率為
(2)中結(jié)合平均值可以得到平均分為:
(3)中用表示抽取結(jié)束后的總記分x, 學(xué)生成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139372351665897_ST.files/image007.png">的有人,在的有人,在的有人,結(jié)合古典概型的概率公式求解得到。
(Ⅰ)設(shè)分?jǐn)?shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,則有,可得,所以頻率分布直方圖如右圖.……4分
(求解頻率3分,畫(huà)圖1分)
(Ⅱ)平均分為:……7分
(Ⅲ)學(xué)生成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139372351665897_ST.files/image007.png">的有人,在的有人,
在的有人.并且的可能取值是. ………8分
則;; ;
;.(每個(gè)1分)
所以的分布列為
0 |
1 |
2 |
3 |
4 |
|
…………………13分
已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問(wèn)中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調(diào)遞增,
則在區(qū)間上恒成立. …………3分
即,而當(dāng)時(shí),,故. …………5分
所以. …………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點(diǎn),,
當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當(dāng),即時(shí),同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿(mǎn)足,
由此求得的范圍是. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com