能利用集合中元素滿足的條件進行解題.五.能力測試: 姓名 得分 . 查看更多

 

題目列表(包括答案和解析)

已知關于的不等式,其中.

⑴當變化時,試求不等式的解集;

⑵對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.

 

查看答案和解析>>

已知關于的不等式,其中.
⑴當變化時,試求不等式的解集;
⑵對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.

查看答案和解析>>

(本小題滿分12分)

已知關于的不等式,其中.

(1)當變化時,試求不等式的解集;

(2)對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.

 

查看答案和解析>>

(本題12分)已知關于的不等式,其中.

(Ⅰ)當變化時,試求不等式的解集 ;

(Ⅱ)對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.

 

 

查看答案和解析>>

(本小題滿分12分)
已知關于的不等式,其中.
(1)當變化時,試求不等式的解集;
(2)對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.

查看答案和解析>>


同步練習冊答案