設(shè)數(shù)列的首項.且記. 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列的首項,前項和為,且,成等差數(shù)列,其中.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足:,記數(shù)列的前項和為,求及數(shù)列的最大項.

查看答案和解析>>

設(shè)數(shù)列的首項,前項和為,且,,成等差數(shù)列,其中.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足:,記數(shù)列的前項和為,求及數(shù)列的最大項.

查看答案和解析>>

 設(shè)數(shù)列的首項,前項和為,且點在直線為與無關(guān)的正實數(shù))上,

(1)求證:數(shù)列是等比數(shù)列;

(2)記數(shù)列的公比為,數(shù)列滿足,設(shè),求數(shù)列的前項和;

(3)在(2)的條件下,設(shè),證明:.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

設(shè)數(shù)列{an}是首項為a1(a1>0),公差為2的等差數(shù)列,其前n項和為Sn,且
S1
,
S2
S3
成等差數(shù)列.
(Ⅰ)求數(shù)列{an]的通項公式;
(Ⅱ)記bn=
an
2n
的前n項和為Tn,求Tn

查看答案和解析>>

設(shè)數(shù)列{an}的首項a1=a≠
1
4
,且an+1=
1
2
an
(n為偶數(shù))
an+
1
4
(n為奇數(shù))
,n∈N*,記bn=a2n-1-
1
4
,cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)當(dāng)a>
1
4
時,數(shù)列{cn}前n項和為Sn,求Sn最值.

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.D      4.C     5.D    6.C

7.A    8.C    9.B      10.C    11.A   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.

14.

 

 

 

 

15. 增函數(shù)的定義

16. 與該平面平行的兩個平面

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)涉及兩個變量,年齡與脂肪含量.

因此選取年齡為自變量,脂肪含量為因變量

作散點圖,從圖中可看出具有相關(guān)關(guān)系.             

┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)的回歸直線方程為

.        

當(dāng)時,,

當(dāng)時,,

所以歲和歲的殘差分別為.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

證明:由于,,

所以只需證明

展開得,即

所以只需證

因為顯然成立,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

證明:(Ⅰ)因為,所以

由于函數(shù)上的增函數(shù),

所以

同理,

兩式相加,得.┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)逆命題:

,則

用反證法證明

假設(shè),那么

所以

這與矛盾.故只有,逆命題得證.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

解:(Ⅰ)由于,且

所以當(dāng)時,得,故

從而.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)數(shù)列不可能為等差數(shù)列,證明如下:

,

,,

若存在,使為等差數(shù)列,則,

,解得

于是,

這與為等差數(shù)列矛盾.所以,對任意,數(shù)列都不可能是等差數(shù)列.

┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ),

,.┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由(Ⅰ)可得,

,

猜想:是公比為的等比數(shù)列.

證明如下:因為,

,所以,

所以數(shù)列是首項為,公比為的等比數(shù)列.┄┄┄┄┄┄┄┄┄┄┄┄12分

 

 

 


同步練習(xí)冊答案