分析:(I)由且
an+1=,n∈N
*,求解可得a
2=a+
,a
3=
(a+
).
(II)由記
bn=a2n-1-,可推知b
n=a
2n-1-
=
(a
2n-3+
)-
=
(a
2n-3-
)=
b
n-1,又因為b
1=a
1-
=a-
≠0由等比數列的定義可知數列{b
n}為等比數列.
(III)當a>
時,{b
n}為正項等比數列,可由b
n+1+b
n+2+b
n+…+b
n+m=b
n+1<2b
n+1=b
n,當n≥4時,s
n-s
3=-b
4-b
5+…+
bn,從而有s
n-s
3<b2-b3-b4-…-bn<0同理,可得s
n-s
1=b
2+b
3-b
4-b
5+…+
bn>0,可推知:當n≥4,s
1<s
n<s
3,s
1<s
2<s
3從而得到結論.
解答:解:(I)a
2=a+
,a
3=
(a+
)
(II)∵b
n=a
2n-1-
=
(a
2n-3+
)-
=
(a
2n-3-
)=
b
n-1∵b
1=a
1-
=a-
≠0
∴
{bn}\為的等比數列
(III)當a>
時,
∵{b
n}為正項等比數列,
∴b
n+1+b
n+2+b
n+…+b
n+m=b
n+1<2b
n+1=b
n當n≥4時,s
n-s
3=-b
4-b
5+…+
bn<b2-b3-b4-…-bn<0
s
n-s
1=b
2+b
3-b
4-b
5+…+
bn>b2-b3-b4-…-bn>0
當n≥4,s
1<s
n<s
3,s
1<s
2<s
3故s
n的最大值為s
3=
(a+
),最小值為s
1=a+
點評:本題主要考查數列的定義,通項及前n項和,還考查了數列的構造及前n項和的最值問題.難度較大.