已知曲線C1的方程為xy=-1.曲線C1關(guān)于點(diǎn)M(-.)的對(duì)稱曲線為C2. 查看更多

 

題目列表(包括答案和解析)

(2008•楊浦區(qū)二模)(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且|AB|=
2
,求橢圓C2的方程;
(3)對(duì)拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對(duì)C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進(jìn)行下去,對(duì)拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求數(shù)列{pn}的通項(xiàng)公式pn

查看答案和解析>>

(2008•楊浦區(qū)二模)(文)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;

(2)已知拋物線C1:y2=2x,經(jīng)過伸縮變換后得拋物線C2:y2=32x,求伸縮比λ.
(3)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且|AB|=
2
,求橢圓C2的方程.

查看答案和解析>>

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系內(nèi),已知曲線C1的方程為ρ2-2ρ(cosθ-2sinθ)+4=0,以極點(diǎn)為原點(diǎn),極軸方向?yàn)閤正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為
5x=1-4t
5y=18+3t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程以及曲線C2的普通方程;
(Ⅱ)設(shè)點(diǎn)P為曲線C2上的動(dòng)點(diǎn),過點(diǎn)P作曲線C1的兩條切線,求這兩條切線所成角余弦的最小值.

查看答案和解析>>

(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且,求橢圓C2的方程;
(3)對(duì)拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對(duì)C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進(jìn)行下去,對(duì)拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數(shù)列{pn}的通項(xiàng)公式pn

查看答案和解析>>

(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且,求橢圓C2的方程;
(3)對(duì)拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對(duì)C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進(jìn)行下去,對(duì)拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數(shù)列{pn}的通項(xiàng)公式pn

查看答案和解析>>


同步練習(xí)冊(cè)答案