.解:(Ⅰ).與軸交點為. -----4分 查看更多

 

題目列表(包括答案和解析)

 (選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準(zhǔn)確填涂題目標(biāo)記. 解答時應(yīng)寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是⊙的直徑,是⊙上的兩點,,

過點作⊙的切線FD的延長線于點.連結(jié)

于點.

    求證:.

 

B. 選修4-2:矩陣與變換

求矩陣的特征值及對應(yīng)的特征向量.

 

C. 選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù)).

   (1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

   (2)設(shè)直線軸的交點是,是曲線上一動點,求的最大值.

 

D.選修4-5:不等式選講

    設(shè)均為正數(shù),且,求證

 

 

 

 

查看答案和解析>>

(從22/23/24三道解答題中任選一道作答,作答時,請注明題號;若多做,則按首做題計入總分,滿分10分. 請將答題的過程寫在答題卷中指定的位置)(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是為參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線相交于兩點,求M,N兩點間的距離.

查看答案和解析>>

(從22/23/24三道解答題中任選一道作答,作答時,請注明題號;若多做,則按首做題計入總分,滿分10分. 請將答題的過程寫在答題卷中指定的位置)(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是為參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線相交于,兩點,求M,N兩點間的距離.

查看答案和解析>>

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,拋物線y=
1
18
x2-
4
9
x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標(biāo)和拋物線的頂點坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)t∈(0,
9
4
)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

已知動直線y=kx交圓(x-2)2+y2=4于坐標(biāo)原點O和點A,交直線x=4于點B,若動點M滿足,動點M的軌跡C的方程為F(x,y)=0.
(1)試用k表示點A、點B的坐標(biāo);
(2)求動點M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個方面的性質(zhì),請你選擇其中的三個方面進行研究,并說明理由(若你研究的方面多于三個,我們將只對試卷解答中的前三項予以評分).
①對稱性;(2分)
②頂點坐標(biāo)(定義:曲線與其對稱軸的交點稱為該曲線的頂點);(2分)
③圖形范圍;(2分)
④漸近線;(3分)
⑤對方程F(x,y)=0,當(dāng)y≥0時,函數(shù)y=f(x)的單調(diào)性.(3分)

查看答案和解析>>


同步練習(xí)冊答案