函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng).且時(shí).有極值-. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù)(其中,).

(1)求函數(shù)的最小正周期;(2)若函數(shù)的圖像關(guān)于直線對(duì)稱(chēng),求的值.

查看答案和解析>>

. (本小題滿分12分)

已知定義在R上的函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng),且x=1時(shí),f(x)取極小值

(Ⅰ)求f(x)的解析式;

(Ⅱ)當(dāng)x∈[-1,1]時(shí),圖像上是否存在兩點(diǎn),使得在此兩點(diǎn)處的切線互相垂直?證明你的結(jié)論.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)的定義域?yàn)?i>R,它的圖像關(guān)于原點(diǎn)對(duì)稱(chēng),且當(dāng)時(shí),函數(shù)取極值1。(1)求的值;(2)若,求證:;(3)求證:曲線上不存在兩個(gè)不同的點(diǎn)A、B,使過(guò)A、B兩點(diǎn)的切線都垂直于直線AB。

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

若將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度得到的圖像恰好關(guān)于點(diǎn)對(duì)稱(chēng),求實(shí)數(shù)的最小值;若函數(shù)上為減函數(shù),試求實(shí)數(shù)b的值。

查看答案和解析>>

(本小題滿分12分)已知函數(shù),點(diǎn)是函數(shù)圖像上任意一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)的軌跡是函數(shù)的圖像.   (Ⅰ)當(dāng)時(shí),解關(guān)于的不等式;  (Ⅱ)當(dāng),且時(shí),總有恒成立,求的取值范圍.

查看答案和解析>>

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

A

A

B

B

D

C

B

B

C

13.    9     14.         15.               16.           

17.解:(1)

        (4分)

的最小正周期為                                              (5分)

的最小值為-2                                              (6分)

(2)的遞增區(qū)間為                                (10分)

18.(1)證明:過(guò)D作DHAE于H,

平面ADE平面ABCE

DH平面ABCE    DHBE

中,由題設(shè)條件可得:AB=2,AE=BE=    AEBE

BE平面ADE                                                 (6分)

(2)由(1)知,BE平面ADE,為BD和平面ADE所成的角,且BEDE

在矩形ABCD中,AB=2,AD=1,E為CD的中點(diǎn)

DE=1,BE=

中,

故BD和平面ADE所成角的正切值為                         (12分)

19.(1)記“3粒種子,至少有1粒未發(fā)芽”為事件,

由題意,種3粒種子,相當(dāng)于作3次獨(dú)立重復(fù)試驗(yàn),

                                  (4分)

(2)記“3粒A種子,至少有2粒未發(fā)芽”為事件,“3粒B種子,全部發(fā)芽”為事件,則     (6分)

由于相互獨(dú)立,故     (8分)

(3)                   (12分)

20.解:(1)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng),為奇函數(shù)

                                          (4分)

(2)假設(shè)存在兩點(diǎn)滿足題設(shè)條件

    

而兩切線垂直,則應(yīng)有,矛盾,

故不存在滿足題設(shè)條件的兩點(diǎn)A,B                                 (8分)

(3)時(shí),為減函數(shù)

時(shí)

                               (12分)

21.解:(1)

兩式相減得:

時(shí),

是首項(xiàng)為,公比為的等比數(shù)列

                                          (4分)

(2)

為以-1為公差的等差數(shù)列,                    (7分)

(3)

以上各式相加得:

當(dāng)時(shí),

當(dāng)時(shí),上式也成立,                          (12分)

22.(1)依拋物線定義知,點(diǎn)P的軌跡C,為N,F(xiàn)為焦點(diǎn),直線為準(zhǔn)線的拋物線

曲線C的方程為.                                           (4分)

(2)①設(shè)M、N的方程為帶入并整理得

      

設(shè)MN的中點(diǎn)為

MN的垂直平分線方程為

點(diǎn)B的坐標(biāo)為

的范圍是                         (8分)

②易得弦長(zhǎng)

為直角三角形,則為等腰直角三角形,

點(diǎn)B的坐標(biāo)為(0,10)

 

 

 


同步練習(xí)冊(cè)答案