題目列表(包括答案和解析)
(1)求實數(shù)t的取值范圍;
(2)是否存在實數(shù)t,使得線段AB(包括兩端點)與直線x=1相交?若存在,求出t的取值范圍;若不存在,請說明理由.
(文)已知函數(shù)f(x)=mx3-x的圖像上,以N(1,n)為切點的切線的傾斜角為.
(1)求m,n的值;
(2)是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1991對于x∈[-1,3]恒成?如果存在,請求出最小的正整數(shù)k;如果不存在,請說明理由。
(3)求證:|f(sinx)+f(cosx)|≤2f(t+)(x∈R,t>0).
(1)求{f(n)}、{g(n)}的通項公式;
(2)設cn=g[f(n)],求數(shù)列{cn}的前n項和;
(3)已知=0,設F(n)=Sn-3n,是否存在整數(shù)m和M,使得對任意正整數(shù)n,不等式m<F(n)<M恒成立?若存在,分別求出m和M的集合,并求出M-m的最小值;若不存在,請說明理由.
(文)已知f(x)=x3-3x,g(x)=2ax2.
(1)當-≤a≤時,求證:F(x)=f(x)-g(x)在(-1,1)上是單調函數(shù);
(2)若g′(x)≤〔g′(x)為g(x)的導函數(shù)〕在[-1,]上恒成立,求a的取值范圍.
(1)當k=1時,求M的值;
(2)求M的最小值及相應的k的值.
(文)設數(shù)列{an}的首項a1=a(a∈R),且an+1=n=1,2,3,….
(1)若0<a<1,求a2、a3、a4、a5;
(2)若0<an<4,證明0<an+1<4;
(3)若0<a≤2,求所有的正整數(shù)k,使得對于任意n∈N*,均有an+k=an成立.
(1)設{bn}是項數(shù)為7的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項.
(2)設{cn}是項數(shù)為2k-1(正整數(shù)k>1)的“對稱數(shù)列”,其中ck,ck+1,…,c2k-1是首項為50,公差為-4的等差數(shù)列.記{cn}各項的和為S2k-1,當k為何值時,S2k-1取得最大值?并求出S2k-1的最大值.
(3)對于確定的正整數(shù)m>1,寫出所有項數(shù)不超過2m的“對稱數(shù)列”,使得1,2,22,…,2m-1依次是該數(shù)列中連續(xù)的項;當m>1 500時,求其中一個“對稱數(shù)列”前2 008項的和S2008.
(文)如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.
(1)設{bn}是7項的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項;
(2)設{cn}是49項的“對稱數(shù)列”,其中c25,c26,…,c49是首項為1,公比為2的等比數(shù)列,求{cn}各項的和S;
(3)設{dn}是100項的“對稱數(shù)列”,其中d51,d52,…,d100是首項為2,公差為3的等差數(shù)列,求{dn}前n項的和Sn(n=1,2,…,100).
(理)已知電流I與時間t的關系式為:I=Asin(ωt+φ)(ω>0,|φ|<π/2),如圖是其在一個周期內的圖象
(1)求I的解析式
(2)若t在任意一段1/150秒的時間內,電流I都能取得最大、最小值,那么ω的最小正整數(shù)是多少?
例10 為促進個人住房商品化的進程,我國1999年元月公布了個人住房公積金貸款利率和商業(yè)性貸款利率如下:
貸款期(年數(shù))
公積金貸款月利率(‰)
商業(yè)性貸款月利率(‰)
……
11
12
13
14
15
……
……
4.365
4.455
4.545
4.635
4.725
……
……
5.025
5.025
5.025
5.025
5.025
……
汪先生家要購買一套商品房,計劃貸款25萬元,其中公積金貸款10萬元,分十二年還清;商業(yè)貸款15萬元,分十五年還清.每種貸款分別按月等額還款,問:
(1)汪先生家每月應還款多少元?
(2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業(yè)貸款也一次性還清;那么他家在這個月的還款總數(shù)是多少?
(參考數(shù)據(jù):1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)
講解 設月利率為r,每月還款數(shù)為a元,總貸款數(shù)為A元,還款期限為n月
第1月末欠款數(shù) A(1+r)-a
第2月末欠款數(shù) [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
第3月末欠款數(shù) [A(1+r)2-a (1+r)-a](1+r)-a
。紸(1+r)3-a (1+r)2-a(1+r)-a
……
第n月末欠款數(shù)
得:
對于12年期的10萬元貸款,n=144,r=4.455‰
∴
對于15年期的15萬元貸款,n=180,r=5.025‰
∴
由此可知,
(2)至12年末,
其中A=150000,a=1268.22,r=5.025‰ ∴X=41669.53
再加上當月的計劃還款數(shù)2210.59元,當月共還款43880.12元.
需要提及的是,本題的計算如果不許用計算器,就要用到二項展開式進行估算,這在2002年全國高考第(12)題中得到考查.
例11 醫(yī)學上為研究傳染病傳播中病毒細胞的發(fā)展規(guī)律及其預防,將病毒細胞注入一只小白鼠體內進行實驗,經(jīng)檢測,病毒細胞的增長數(shù)與天數(shù)的關系記錄如下表. 已知該種病毒細胞在小白鼠體內的個數(shù)超過108的時候小白鼠將死亡.但注射某種藥物,將可殺死其體內該病毒細胞的98%.
(1)為了使小白鼠在實驗過程中不死亡,第一次最遲應在何時注射該種藥物?(精確到天)
(2)第二次最遲應在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)
|