取時.u最大. 即安全負荷最大.三次函數(shù)最值問題一般可用三元均值不等式求解, 如果學過導數(shù)知識, 其解法就更為方便, 省去了應用均值不等式時配湊“定和 或“定積 的技巧性. 例7 已知甲.乙.丙三種食物的維生素A.B含量及成本如下表.若用甲.乙.丙三種食物各x千克.y千克.z千克配成100千克混合食物.并使混合食物內至少含有56000單位維生素A和63000單位維生素B. 甲乙丙維生素A600700400維生素B800400500成本1194 (1)用x.y表示混合食物成本c元, (2)確定x.y.z的值.使成本最低. 查看更多

 

題目列表(包括答案和解析)

定義域為正整數(shù)集N+的函數(shù)f(x)=[log2x],其中[log2x]表示數(shù)值不超過去時log2x的最大整數(shù).
(1)求f(3)的值;
(2)若f(x)=3,求x的取值集合;
(3)對于任意正整數(shù)n,求和:
C
f(1)
n
+
C
f(2)
n
+
C
f(3)
n
+…+
C
f(2n)
n

查看答案和解析>>

求函數(shù)y=-cos2x+
3
cosx
+
5
4
的最大值及最小值,并寫出x取何值時函數(shù)有最大值和最小值.

查看答案和解析>>

(2013•深圳一模)已知f(x)=x-
a
x
(a>0)
,g(x)=2lnx+bx,且直線y=2x-2與曲線y=g(x)相切.
(1)若對[1,+∞)內的一切實數(shù)x,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當a=1時,求最大的正整數(shù)k,使得對[e,3](e=2.71828…是自然對數(shù)的底數(shù))內的任意k個實數(shù)x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立;
(3)求證:
n
i=1
4i
4i2-1
>ln(2n+1)(n∈N*)

查看答案和解析>>

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)在一個周期內,當x=
π
6
時,y取最小值-3;當x=
3
時,y最大值3.
(I)求f(x)的解析式; 
(II)求f(x)在區(qū)間[
π
2
,π]
上的最值.

查看答案和解析>>

為響應國家擴大內需的政策,某廠家擬在2013年舉行促銷活動,經調查測算,該產品的年銷量(即該廠的年產量)x萬件與年促銷費用t(t≥0)萬元滿足x=4-
k2t+1
(k為常數(shù)).如果不搞促銷活動,則該產品的年銷量只能是1萬件.已知2013年生產該產品的固定投入為6萬元,每生產1萬件該產品需要再投入12萬元,廠家將每件產品的銷售價格定為每件產品平均成本的1.5倍(產品成本包括固定投入和再投入兩部分).
(1)將該廠家2013年該產品的利潤y萬元表示為年促銷費用t萬元的函數(shù);
(2)該廠家2013年的年促銷費用投入多少萬元時廠家利潤最大?

查看答案和解析>>

    例10  為促進個人住房商品化的進程,我國1999年元月公布了個人住房公積金貸款利率和商業(yè)性貸款利率如下:

 

貸款期(年數(shù))

公積金貸款月利率(‰)

商業(yè)性貸款月利率(‰)

……

11

12

13

14

15

……

……

4.365

4.455

4.545

4.635

4.725

……

……

5.025

5.025

5.025

5.025

5.025

……


    汪先生家要購買一套商品房,計劃貸款25萬元,其中公積金貸款10萬元,分十二年還清;商業(yè)貸款15萬元,分十五年還清.每種貸款分別按月等額還款,問:
    (1)汪先生家每月應還款多少元?
    (2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業(yè)貸款也一次性還清;那么他家在這個月的還款總數(shù)是多少?
    (參考數(shù)據(jù):1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)


   講解  設月利率為r,每月還款數(shù)為a元,總貸款數(shù)為A元,還款期限為n月
  第1月末欠款數(shù) A(1+r)-a
  第2月末欠款數(shù) [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
    第3月末欠款數(shù) [A(1+r)2-a (1+r)-a](1+r)-a
          。紸(1+r)3-a (1+r)2-a(1+r)-a
  ……
  第n月末欠款數(shù) 
    得:                                  

  對于12年期的10萬元貸款,n=144,r=4.455‰
  ∴
  對于15年期的15萬元貸款,n=180,r=5.025‰
  ∴
  由此可知,先生家前12年每月還款942.37+1268.22=2210.59元,后3年每月還款1268.22元.
  (2)至12年末,先生家按計劃還款以后還欠商業(yè)貸款
   
  其中A=150000,a=1268.22,r=5.025‰  ∴X=41669.53
    再加上當月的計劃還款數(shù)2210.59元,當月共還款43880.12元.   

    需要提及的是,本題的計算如果不許用計算器,就要用到二項展開式進行估算,這在2002年全國高考第(12)題中得到考查.

    例11  醫(yī)學上為研究傳染病傳播中病毒細胞的發(fā)展規(guī)律及其預防,將病毒細胞注入一只小白鼠體內進行實驗,經檢測,病毒細胞的增長數(shù)與天數(shù)的關系記錄如下表. 已知該種病毒細胞在小白鼠體內的個數(shù)超過108的時候小白鼠將死亡.但注射某種藥物,將可殺死其體內該病毒細胞的98%.

(1)為了使小白鼠在實驗過程中不死亡,第一次最遲應在何時注射該種藥物?(精確到天)

(2)第二次最遲應在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)

    <rp id="beh00"><meter id="beh00"></meter></rp>

    天數(shù)t

    病毒細胞總數(shù)N

    1

    2

    3

    4

    5

    6

    7

    1

    2

    4

    8

    16

    32

    64

     

     

     

     

     

     

     

     

    講解 (1)由題意病毒細胞關于時間n的函數(shù)為, 則由

    兩邊取對數(shù)得    n27.5,

       即第一次最遲應在第27天注射該種藥物.

    (2)由題意注入藥物后小白鼠體內剩余的病毒細胞為,

    再經過x天后小白鼠體內病毒細胞為,

    由題意≤108,兩邊取對數(shù)得

         故再經過6天必須注射藥物,即第二次應在第33天注射藥物.

        本題反映的解題技巧是“兩邊取對數(shù)”,這對實施指數(shù)運算是很有效的.

         例12 有一個受到污染的湖泊,其湖水的容積為V立方米,每天流出湖泊的水量都是r立方米,現(xiàn)假設下雨和蒸發(fā)正好平衡,且污染物質與湖水能很好地混合,用g(t)表示某一時刻t每立方米湖水所含污染物質的克數(shù),我們稱為在時刻t時的湖水污染質量分數(shù),已知目前污染源以每天p克的污染物質污染湖水,湖水污染質量分數(shù)滿足關系式g(t)= +[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始質量分數(shù).

    (1)當湖水污染質量分數(shù)為常數(shù)時,求湖水污染的初始質量分數(shù); 

    (2)求證:當g(0)< 時,湖泊的污染程度將越來越嚴重; 

    (3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要經過多少天才能使湖水的污染水平下降到開始時污染水平的5%?

     講解(1)∵g(t)為常數(shù),  有g(0)-=0, ∴g(0)=   .                      

    (2) 我們易證得0<t1<t2, 則

    g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ,

    ∵g(0)?<0,t1<t2,e>e,

    ∴g(t1)<g(t2)    .                                                      

    故湖水污染質量分數(shù)隨時間變化而增加,污染越來越嚴重.                

    (3)污染停止即P=0,g(t)=g(0)?e,設經過t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)?

    =e,∴t= ln20,

    故需要 ln20天才能使湖水的污染水平下降到開始時污染水平的5%.

    高考應用性問題的熱門話題是增減比率型和方案優(yōu)化型, 另外,估測計算型和信息遷移型也時有出現(xiàn).當然,數(shù)學高考應用性問題關注當前國內外的政治,經濟,文化, 緊扣時代的主旋律,凸顯了學科綜合的特色,是歷年高考命題的一道亮麗的風景線.

     


    同步練習冊答案