依題意 ≥ 查看更多

 

題目列表(包括答案和解析)

意大利數(shù)學(xué)家斐波那契(L.FibonACCi)在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對大兔子每月能生一對小兔子,而每對小兔子過了一個月就可長成大兔子,如果不發(fā)生死亡,那么由一對大兔子開始,一年后能有多少對大兔子呢?

我們依次給出各個月的大兔子對數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:

1,1,2,3,5,8,13,21,34,55,89,144,233,……

這就是斐波那契數(shù)列,此數(shù)列中a1=a2=1,你能歸納出當(dāng)n≥3時an的遞推關(guān)系式嗎??

查看答案和解析>>

意大利數(shù)學(xué)家斐波那契(L. Fibonacci)在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對大兔子每月能生一對小兔子,而每對小兔子過了一個月就可長成大兔子,如果不發(fā)生死亡,那么由一對大兔子開始,一年后能有多少對大兔子呢??

我們依次給出各個月的大兔子對數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:?

1,1,2,3,5,8,13,21,34,55,89,144,233,….?

這就是斐波那契數(shù)列,此數(shù)列中a1=a2=1,你能歸納出,當(dāng)n≥3時an的遞推關(guān)系式嗎??

      

查看答案和解析>>

意大利數(shù)學(xué)家斐波那契(L.FibonACCi)在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對大兔子每月能生一對小兔子,而每對小兔子過了一個月就可長成大兔子,如果不發(fā)生死亡,那么由一對大兔子開始,一年后能有多少對大兔子呢?

我們依次給出各個月的大兔子對數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:

1,1,2,3,5,8,13,21,34,55,89,144,233,……

這就是斐波那契數(shù)列,此數(shù)列中a1=a2=1,你能歸納出當(dāng)n≥3時an的遞推關(guān)系式嗎??

查看答案和解析>>

意大利數(shù)學(xué)家斐波那契在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對大兔子每月能生一對小兔子,而每對小兔子過了一個月就可長成大兔子,如果不發(fā)生死亡,那么由一對大兔子開始,一年后能有多少對大兔子呢?

我們依次給出各個月的大兔子對數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:1,1,2,3,5,8,13,21,34,55,89,144,233,….這就是斐波那契數(shù)列,此數(shù)列中a1a2=1,你能歸納出,當(dāng)n≥3時,an的遞推關(guān)系嗎?

查看答案和解析>>

意大利數(shù)學(xué)家斐波那契(L.Fibonacci)在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對大兔子每月能生一對小兔子,而每對小兔子過了一個月就可長成大兔子,如果不發(fā)生死亡,那么由一對大兔子開始,一年后能有多少對大兔子呢?

我們依次給出各個月的大兔子對數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:

1,1,2,3,5,8,13,21,34,55,89,144,233,……

這就是斐波那契數(shù)列,此數(shù)列中a1=a2=1,你能歸納出當(dāng)n≥3時an的遞推關(guān)系式嗎?

查看答案和解析>>

    例10  為促進(jìn)個人住房商品化的進(jìn)程,我國1999年元月公布了個人住房公積金貸款利率和商業(yè)性貸款利率如下:

 

貸款期(年數(shù))

公積金貸款月利率(‰)

商業(yè)性貸款月利率(‰)

……

11

12

13

14

15

……

……

4.365

4.455

4.545

4.635

4.725

……

……

5.025

5.025

5.025

5.025

5.025

……


    汪先生家要購買一套商品房,計劃貸款25萬元,其中公積金貸款10萬元,分十二年還清;商業(yè)貸款15萬元,分十五年還清.每種貸款分別按月等額還款,問:
    (1)汪先生家每月應(yīng)還款多少元?
    (2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業(yè)貸款也一次性還清;那么他家在這個月的還款總數(shù)是多少?
    (參考數(shù)據(jù):1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)


   講解  設(shè)月利率為r,每月還款數(shù)為a元,總貸款數(shù)為A元,還款期限為n月
  第1月末欠款數(shù) A(1+r)-a
  第2月末欠款數(shù) [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
    第3月末欠款數(shù) [A(1+r)2-a (1+r)-a](1+r)-a
          。紸(1+r)3-a (1+r)2-a(1+r)-a
  ……
  第n月末欠款數(shù) 
    得:                                  

  對于12年期的10萬元貸款,n=144,r=4.455‰
  ∴
  對于15年期的15萬元貸款,n=180,r=5.025‰
  ∴
  由此可知,先生家前12年每月還款942.37+1268.22=2210.59元,后3年每月還款1268.22元.
  (2)至12年末,先生家按計劃還款以后還欠商業(yè)貸款
   
  其中A=150000,a=1268.22,r=5.025‰  ∴X=41669.53
    再加上當(dāng)月的計劃還款數(shù)2210.59元,當(dāng)月共還款43880.12元.   

    需要提及的是,本題的計算如果不許用計算器,就要用到二項展開式進(jìn)行估算,這在2002年全國高考第(12)題中得到考查.

    例11  醫(yī)學(xué)上為研究傳染病傳播中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實驗,經(jīng)檢測,病毒細(xì)胞的增長數(shù)與天數(shù)的關(guān)系記錄如下表. 已知該種病毒細(xì)胞在小白鼠體內(nèi)的個數(shù)超過108的時候小白鼠將死亡.但注射某種藥物,將可殺死其體內(nèi)該病毒細(xì)胞的98%.

(1)為了使小白鼠在實驗過程中不死亡,第一次最遲應(yīng)在何時注射該種藥物?(精確到天)

(2)第二次最遲應(yīng)在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)

天數(shù)t

病毒細(xì)胞總數(shù)N

1

2

3

4

5

6

7

1

2

4

8

16

32

64

 

 

 

 

 

 

 

 

講解 (1)由題意病毒細(xì)胞關(guān)于時間n的函數(shù)為, 則由

兩邊取對數(shù)得    n27.5,

   即第一次最遲應(yīng)在第27天注射該種藥物.

(2)由題意注入藥物后小白鼠體內(nèi)剩余的病毒細(xì)胞為,

再經(jīng)過x天后小白鼠體內(nèi)病毒細(xì)胞為,

由題意≤108,兩邊取對數(shù)得

,

     故再經(jīng)過6天必須注射藥物,即第二次應(yīng)在第33天注射藥物.

    本題反映的解題技巧是“兩邊取對數(shù)”,這對實施指數(shù)運(yùn)算是很有效的.

     例12 有一個受到污染的湖泊,其湖水的容積為V立方米,每天流出湖泊的水量都是r立方米,現(xiàn)假設(shè)下雨和蒸發(fā)正好平衡,且污染物質(zhì)與湖水能很好地混合,用g(t)表示某一時刻t每立方米湖水所含污染物質(zhì)的克數(shù),我們稱為在時刻t時的湖水污染質(zhì)量分?jǐn)?shù),已知目前污染源以每天p克的污染物質(zhì)污染湖水,湖水污染質(zhì)量分?jǐn)?shù)滿足關(guān)系式g(t)= +[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始質(zhì)量分?jǐn)?shù).

(1)當(dāng)湖水污染質(zhì)量分?jǐn)?shù)為常數(shù)時,求湖水污染的初始質(zhì)量分?jǐn)?shù); 

(2)求證:當(dāng)g(0)< 時,湖泊的污染程度將越來越嚴(yán)重; 

(3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要經(jīng)過多少天才能使湖水的污染水平下降到開始時污染水平的5%?

 講解(1)∵g(t)為常數(shù),  有g(shù)(0)-=0, ∴g(0)=   .                      

(2) 我們易證得0<t1<t2, 則

g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ,

∵g(0)?<0,t1<t2,e>e,

∴g(t1)<g(t2)    .                                                      

故湖水污染質(zhì)量分?jǐn)?shù)隨時間變化而增加,污染越來越嚴(yán)重.                

(3)污染停止即P=0,g(t)=g(0)?e,設(shè)經(jīng)過t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)?

=e,∴t= ln20,

故需要 ln20天才能使湖水的污染水平下降到開始時污染水平的5%.

高考應(yīng)用性問題的熱門話題是增減比率型和方案優(yōu)化型, 另外,估測計算型和信息遷移型也時有出現(xiàn).當(dāng)然,數(shù)學(xué)高考應(yīng)用性問題關(guān)注當(dāng)前國內(nèi)外的政治,經(jīng)濟(jì),文化, 緊扣時代的主旋律,凸顯了學(xué)科綜合的特色,是歷年高考命題的一道亮麗的風(fēng)景線.

 


同步練習(xí)冊答案