(1)若拋物線的焦點為橢圓C的上頂點.求橢圓C的方程, 查看更多

 

題目列表(包括答案和解析)

橢圓C:
x2
25
+
y2
9
=1
的焦點為F1,F(xiàn)2,有下列研究問題及結(jié)論:
①曲線
x2
25-k
+
y2
9-k
=1 (k<9)
與橢圓C的焦點相同;
②一條拋物線的焦點是橢圓C 的短軸的端點,頂點在原點,則其標準方程為x2=±6y;
③若點P為橢圓上一點,且滿足
PF1
PF2
=0
,則|
PF1
+
PF2
|
=8.
則以上研究結(jié)論正確的序號依次是( 。

查看答案和解析>>

橢圓C:
x2
25
+
y2
9
=1
的焦點為F1,F(xiàn)2,有下列研究問題及結(jié)論:
①曲線
x2
25-k
+
y2
9-k
=1 (k<9)
與橢圓C的焦點相同;
②一條拋物線的焦點是橢圓C 的短軸的端點,頂點在原點,則其標準方程為x2=±6y;
③若點P為橢圓上一點,且滿足
PF1
PF2
=0
,則|
PF1
+
PF2
|
=8.
則以上研究結(jié)論正確的序號依次是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點恰好是拋物線y=
1
4
x2
的焦點,離心率等于
2
5
5

(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若
MA
=λ1
AF
,
MB
=λ2
BF
,求證:λ12為定值.

查看答案和解析>>

已知橢圓C的中心在坐標原點,焦點在x軸上,它的一個頂點恰好是拋物線y=
1
4
x2
的焦點,離心率為
2
5
5

(1)求橢圓C的標準方程;
(2)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若
MA
=λ1
AF
,
MB
=λ2
BF
,求證:λ12=-10.

查看答案和解析>>

已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線y=
1
4
x2
的焦點,離心率等于
2
2
.直線l與橢圓C交于M,N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點F是否可以為△BMN的垂心?若可以,求出直線l的方程;若不可以,請說明理由.

查看答案和解析>>


同步練習冊答案