題目列表(包括答案和解析)
已知函數(shù)。
(1)求函數(shù)的最小正周期和最大值;
(2)求函數(shù)的增區(qū)間;
(3)函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過(guò)怎樣的變換得到?
【解析】本試題考查了三角函數(shù)的圖像與性質(zhì)的運(yùn)用。第一問(wèn)中,利用可知函數(shù)的周期為,最大值為。
第二問(wèn)中,函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。故當(dāng),解得x的范圍即為所求的區(qū)間。
第三問(wèn)中,利用圖像將的圖象先向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變),再向上平移1個(gè)單位即可。
解:(1)函數(shù)的最小正周期為,最大值為。
(2)函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。
即
所求的增區(qū)間為,
即
所求的減區(qū)間為,。
(3)將的圖象先向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變),再向上平移1個(gè)單位即可。
x2 |
m+1 |
y2 |
n+1 |
x2 |
m+1 |
y2 |
n+1 |
2 |
若兩集合,, 分別從集合中各任取一個(gè)元素、,即滿足,
,記為,
(Ⅰ)若,,寫(xiě)出所有的的取值情況,并求事件“方程所對(duì)應(yīng)的曲線表示焦點(diǎn)在軸上的橢圓”的概率;
(Ⅱ)求事件“方程所對(duì)應(yīng)的曲線表示焦點(diǎn)在軸上的橢圓,且長(zhǎng)軸長(zhǎng)大于短軸長(zhǎng)的倍”的概率.
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)當(dāng)時(shí),求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程!4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是
求由拋物線與直線及所圍成圖形的面積.
【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點(diǎn)坐標(biāo),然后利用定積分表示出面積為,所以得到,由此得到結(jié)論為
解:設(shè)所求圖形面積為,則
=.即所求圖形面積為.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com