.即平面BCE與平面ACD所成銳二面角為45°.----12分 查看更多

 

題目列表(包括答案和解析)

(2012•惠州模擬)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求平面BCE與平面ACD所成銳二面角的大。

查看答案和解析>>

如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,DE=2AB=2,且F是CD的中點.
(Ⅰ)求證:AF∥平面BCE; 
(Ⅱ)求證:平面BCE⊥平面CDE; 
(Ⅲ)設(shè)AC=2m,當m為何值時?使得平面BCE與平面ACD所成的二面角的大小為45°.

查看答案和解析>>

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大;
(3)求點G到平面BCE的距離.

查看答案和解析>>

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大小;
(3)求點G到平面BCE的距離.

查看答案和解析>>

如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,DE=2AB=2,且F是CD的中點.
(1)求證:平面ABF⊥平面CDE;
(2)設(shè)AC=2m,當m為何值時?使得平面BCE與平面ACD所成的二面角的大小為45°.

查看答案和解析>>


同步練習冊答案