方法二:取BC的中點(diǎn)O.因?yàn)槭堑冗吶切? 查看更多

 

題目列表(包括答案和解析)

(2011•洛陽(yáng)二模)在三棱柱ABC-A1B1C1中,△ABC為正三角形,AA1=AC=2,∠A1AC=60°,平面A1ACC1⊥平面ABC1,N為BC的中點(diǎn),點(diǎn)P在棱A1C1上,
A1P
A1C1

(1)當(dāng)λ取什么值時(shí),直線PN與平面ABC所成的角θ最大,并求此時(shí)θ的正弦值;
(2)求二面角C1-AN-C的余弦值.

查看答案和解析>>

(2012•棗莊二模)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:DF⊥平面PAF;
(2)在線段AP上取點(diǎn)G使AG=
14
AP,求證:EG∥平面PFD.

查看答案和解析>>

(2012•奉賢區(qū)二模)如圖,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿足
A1P
A1B1

(1)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大;
(2)在(1)的條件下,求三棱錐P-MNC的體積.

查看答案和解析>>

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,A A1=AB=AC=1,AB⊥AC,M、N分別是CC1,BC的中點(diǎn),點(diǎn)P在直線A1B1上,且

(1)證明:無(wú)論入取何值,總有AM⊥PN;

(2)當(dāng)入取何值時(shí),直線PN與平面ABC所成的角θ最大?

并求該角取最大值時(shí)的正切值。

(3)是否存在點(diǎn)P,使得平面PMN與平面ABC所成的二面

角為30º,若存在,試確定點(diǎn)P的位置,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

(2012•吉林二模)如圖所示,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點(diǎn),∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求證:平面BCD⊥平面ABC
(Ⅱ)求證:AF∥平面BDE;
(Ⅲ)求四面體B-CDE的體積.

查看答案和解析>>


同步練習(xí)冊(cè)答案