CD是CS在面ABCD內(nèi)的射影.且 查看更多

 

題目列表(包括答案和解析)

如圖,VC是△ABC所在平面的斜線,V在面ABC上的射影為N,N在△ABC的高CD上,M是VC上的一點(diǎn),∠MDC=∠CVN.求證:VC⊥面AMB.

查看答案和解析>>

多面體ABCDE中,AB=BC=AC=AE=1,CD=2,AE⊥面ABC,AE∥CD.
(1)在BC上找一點(diǎn)N,使得AN∥面BED
(2)求證:面BED⊥面BCD.

查看答案和解析>>

下面給出的幾個(gè)命題中:
①若平面α∥平面β,AB,CD是夾在α,β間的線段,若AB∥CD,則AB=CD;
②a,b是異面直線,b,c是異面直線,則a,c一定是異面直線;
③過(guò)空間任一點(diǎn),可以做兩條直線和已知平面α垂直;
④平面α∥平面β,P∈α,PQ∥β,則PQ?α;
⑤若點(diǎn)P到三角形三個(gè)頂點(diǎn)的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是該三角形的外心;
⑥a,b是兩條異面直線,P為空間一點(diǎn),過(guò)P總可以作一個(gè)平面與a,b之一垂直,與另一個(gè)平行.
其中正確的命題是
①④⑤
①④⑤

查看答案和解析>>

15、在平面幾何里有射影定理:設(shè)△ABC的兩邊AB⊥AC,D是A點(diǎn)在BC邊上的射影,則AB2=BD•BC.拓展到空間,在四面體A-BCD中,DA⊥面ABC,點(diǎn)O是A在面BCD內(nèi)的射影,且O在△BCD內(nèi),類比平面三角形射影定理,△ABC,△BOC,△BDC三者面積之間關(guān)系為
(S△ABC2=S△BOC.S△BDC

查看答案和解析>>

19、如圖已知VC是△ABC所在平面的一條斜線,點(diǎn)N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC與AB之間的距離為h,點(diǎn)M∈VC.
(1)證明∠MDC是二面角M-AB-C的平面角;
(2)當(dāng)∠MDC=∠CVN時(shí),證明VC⊥平面AMB.

查看答案和解析>>


同步練習(xí)冊(cè)答案