下面用數(shù)學(xué)歸納法證明: 查看更多

 

題目列表(包括答案和解析)

用數(shù)學(xué)歸納法證明:

【解析】首先證明當(dāng)n=1時等式成立,再假設(shè)n=k時等式成立,得到等式

,

下面證明當(dāng)n=k+1時等式左邊

,

根據(jù)前面的假設(shè)化簡即可得到結(jié)果,最后得到結(jié)論.

 

查看答案和解析>>

試判斷下面的證明過程是否正確:

用數(shù)學(xué)歸納法證明:

證明:(1)當(dāng)時,左邊=1,右邊=1

∴當(dāng)時命題成立.

(2)假設(shè)當(dāng)時命題成立,即

則當(dāng)時,需證

由于左端等式是一個以1為首項,公差為3,項數(shù)為的等差數(shù)列的前項和,其和為

式成立,即時,命題成立.根據(jù)(1)(2)可知,對一切,命題成立.

查看答案和解析>>

試判斷下面的證明過程是否正確:

用數(shù)學(xué)歸納法證明:

證明:(1)當(dāng)時,左邊=1,右邊=1

∴當(dāng)時命題成立.

(2)假設(shè)當(dāng)時命題成立,即

則當(dāng)時,需證

由于左端等式是一個以1為首項,公差為3,項數(shù)為的等差數(shù)列的前項和,其和為

式成立,即時,命題成立.根據(jù)(1)(2)可知,對一切,命題成立.

查看答案和解析>>

試判斷下面的證明過程是否正確:

用數(shù)學(xué)歸納法證明:

1+4+7+…3n-2)=(3n-1)

查看答案和解析>>

(15分)觀察下面等式,歸納出一般結(jié)論,并用數(shù)學(xué)歸納法證明你的結(jié)論。

結(jié)論:                        

ww w.k s5 u.co m

查看答案和解析>>


同步練習(xí)冊答案