令f(x1)?f(x2)>0, 解得a>. 查看更多

 

題目列表(包括答案和解析)

已知f(x)=alnx-bx2圖象上一點(diǎn)P(2,f(2))處的切線方程為y=-3x+2ln2+2.
(1)求f(x)的單調(diào)增區(qū)間;
(2)令g(x)=f(x)-kx(k∈R),如果g(x)圖象與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點(diǎn),AB的中點(diǎn)為G(x0,0),問(wèn)g(x)在x=x0處是否取得極值.

查看答案和解析>>

(2012•盧灣區(qū)一模)已知函數(shù)f(x)=
x+1-tt-x
(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來(lái)表示不超過(guò)t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過(guò)程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.若取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)t的值.

查看答案和解析>>

(2013•茂名二模)已知函數(shù)f(x)=-x3+x2+bx,g(x)=alnx,(a>0).
(1)當(dāng)a=x時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)當(dāng)b=0時(shí),令F(x)=
f(x),x<1
g(x),x≥1
.P(x1,F(xiàn)(x1)),Q(x2,F(xiàn)(x2))為曲線y=F(x)上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè) A、B、C是直線l上的三點(diǎn),向量
OA
OB
,
OC
滿足關(guān)系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化簡(jiǎn)函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若函數(shù)g(x)=f(
1
2
x+
π
3
)
,x∈[0,
12
]
的圖象與直線y=b的交點(diǎn)的橫坐標(biāo)成等差數(shù)列,試求實(shí)數(shù)b的值;
(Ⅲ)令函數(shù)h(x)=
2
(sinx+cosx)+sin2x-a,若對(duì)任意的x1x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)f(x)是定義在R上的增函數(shù),令g(x)=f(x)-f(2010-x)
(1)求證g(x)+g(2010-x)時(shí)定值;
(2)判斷g(x)在R上的單調(diào)性,并證明;
(3)若g(x1)+g(x2)>0,求證x1+x2>2010.

查看答案和解析>>


同步練習(xí)冊(cè)答案