令.得x=-2, .x[-3,-2)-2 查看更多

 

題目列表(包括答案和解析)

設(shè)f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一問中,

變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;

第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而

進(jìn)而得到結(jié)論。

(Ⅰ) 解:

!3

變換的步驟是:

①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;…………………………………3

(Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2

(1)當(dāng)時(shí),;…………2

(2)當(dāng)時(shí);

 

查看答案和解析>>

函數(shù)f(x)=Asin(wx+),(A)>0,w>0,||<)的一系列對應(yīng)值如下表:

(1)根據(jù)表中數(shù)據(jù)求出f(x)的解析式;

(2)指出函數(shù)f(x)的圖象是由函數(shù)y=sinx(x∈R)的圖象經(jīng)過怎樣的變化而得到的;

(3)令g(x)=f(x+)-a,若g(x)在x∈[-,]時(shí)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

已知定義在(-1,1)上的函數(shù)f(x)滿足f=1,且對x、y∈(-1,1)時(shí),有f(x)-f(y)=

(1)判斷f(x)在(-1,1)上的奇偶性,并證明之;

(2)令x1,xn+1=,求數(shù)列{f(xn)}的通項(xiàng)公式;

(3)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問是否存在正整數(shù)m,使得對任意的n∈N*,有Tn成立?若存在,求出m的最小值;若不存在,則說明理由.

查看答案和解析>>

已知數(shù)列{an}中,,點(diǎn)(n,2an+1-an)在直線y=x上,其中n∈N*

(1)令bn=an+1-an-1,求證數(shù)列{bn}是等比數(shù)列

(2)求數(shù)列{an}的通項(xiàng);

(3)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ.若不存在,則說明理由.

查看答案和解析>>

已知數(shù)列{an}中,,點(diǎn)(n,2an+1-an)在直線y=x上,其中n=1,2,3….

(1)令bn=an+1-an-1,求證:數(shù)列{bn}是等比數(shù)列;

(2)求數(shù)列{an}通項(xiàng)公式;

(3)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ.若不存在,則說明理由.

查看答案和解析>>


同步練習(xí)冊答案